

新安文通大学管理学院 THE SCHOOL OF MANAGEMENT XI'AN JIAOTONG UNIVERSITY

4 E-R模型和数据库设计

刘跃文 博士, 副教授 西安交通大学管理学院 信息管理与电子商务系

liuyuewen@mail.xjtu.edu.cn

V1, 2017-10-24

7.2 Modeling 实体关系模型 [理解]

- A *database* can be modeled as:
 - a collection of entities,
 - relationship among entities.
- An **entity** 实体 is an object that exists and is distinguishable from other objects.
 - Example: specific person, company, event, plant
- Entities have attributes 属性
 - Example: people have *names* and *addresses*
- An **entity set 实体集** is a set of entities of the same type that share the same properties.
 - Example: set of all persons, companies, trees, holidays

Entity Sets instructor and student

instructor_ID instructor_name

instructor

student

Relationship Sets 关系集 [理解]

- A relationship 关系/联系 is an association among several entities Example: 44553 (Peltier) <u>advisor</u> 22222 (<u>Einstein</u>)
 - *student* entity relationship set *instructor* entity
- A **relationship set** is a mathematical relation among $n \ge 2$ entities, each taken from entity sets

$$\{(e_1, e_2, \cdots, e_n) \mid e_1 \in E_1, e_2 \in E_2, \cdots, e_n \in E_n\}$$

where (e_1, e_2, \dots, e_n) is a relationship

• Example:

(44553,22222) ∈ *advisor*

Relationship Set advisor

student

Relationship Sets (Cont.) [理解]

- An **attribute** can also be property of a relationship set. 关系集也有属性。
- For instance, the *advisor* relationship set between entity sets *instructor* and *student* may have the attribute *date* which tracks when the student started being associated with the advisor

Degree 度 of a Relationship Set [理解]

• binary relationship 二元关系集

- involve two entity sets (or degree two).
- most relationship sets in a database system are binary.
- Relationships between more than two entity sets are rare. Most relationships are binary. (More on this later.)
 - Example: *students* work on research *projects* under the guidance of an *instructor*.
 - relationship proj_guide is a ternary relationship between instructor, student, and project

Attributes 属性 [理解]

- An entity is represented by a set of attributes, that is descriptive properties possessed by all members of an entity set.
 - Example:

instructor = (ID, name, street, city, salary)
course=(course_id, title, credits)

- Domain 域 the set of permitted values for each attribute
- Attribute types:
 - Simple 简单 and composite 复合 attributes.
 - Single-valued 单值 and multivalued 多值 attributes
 - Example: multivalued attribute: phone_numbers 一个人有多个号码
 - Derived 派生 attributes
 - Can be computed from other attributes
 - Example: age, given date_of_birth

Composite Attributes

7.3 Mapping Cardinality 映射基数 Constraints

- Express the number of entities to which another entity can be associated via a relationship set.
- Most useful in describing binary relationship sets.
- For a binary relationship set the mapping cardinality must be one of the following types:
 - One to one
 - One to many
 - Many to one
 - Many to many

Mapping Cardinalities [理解]

One to one

One to many

Note: Some elements in *A* and *B* may not be mapped to any elements in the other set

Mapping Cardinalities [理解]

Many to one

Many to many

Note: Some elements in A and B may not be mapped to any elements in the other set

Keys 键/码 [理解]

- A **super key** of an entity set is a set of one or more attributes whose values uniquely determine each entity.
- A candidate key of an entity set is a minimal super key
 - *ID* is candidate key of *instructor*
 - *course_id* is candidate key of *course*
- Although several candidate keys may exist, one of the candidate keys is selected to be the **primary key**.

Keys for Relationship Sets [理解]

- The combination of primary keys of the participating entity sets forms a super key of a relationship set.
 - (*s_id*, *i_id*) is the super key of *advisor*
 - NOTE: this means a pair of entity sets can have at most one relationship in a particular relationship set.
 - Example: if we wish to track multiple meeting dates between a student and her advisor, we cannot assume a relationship for each meeting. We can use a multivalued attribute though
- Must consider the mapping cardinality of the relationship set when deciding what are the candidate keys
- Need to consider semantics of relationship set in selecting the *primary key* in case of more than one candidate key

7.5 E-R Diagrams E-R图 [掌握]

- Rectangles represent entity sets.
- Diamonds represent relationship sets.
- Attributes listed inside entity rectangle
- Underline indicates primary key attributes

Entity With Composite, Multivalued, and Derived Attributes [理解]

instructor
<u>ID</u>
name
first_name
middle_initial
last_name
address
street
street_number
street_name
apt_number
city
state
zip
{ phone_number }
date_of_birth
age ()

Relationship Sets with Attributes [理解]

Roles [掌握]

- Entity sets of a relationship need not be distinct
 - Each occurrence of an entity set plays a "role" in the relationship
- The labels "*course_id*" and "*prereq_id*" are called **roles**.

Cardinality Constraints 映射基数 [掌握]

- We express cardinality constraints by drawing either a directed line (→), signifying "one," or an undirected line (—), signifying "many," between the relationship set and the entity set.
- One-to-one relationship:
 - A student is associated with at most one *instructor* via the relationship *advisor*
 - A *student* is associated with at most one *department* via *stud_dept*

One-to-One Relationship

- one-to-one relationship between an *instructor* and a *student*
 - an instructor is associated with at most one student via *advisor*
 - and a student is associated with at most one instructor via *advisor*

One-to-Many Relationship

- one-to-many relationship between an *instructor* and a *student*
 - an instructor is associated with several (including 0) students via *advisor*
 - a student is associated with at most one instructor via advisor

Many-to-One Relationships

- In a many-to-one relationship between an *instructor* and a *student*,
 - an instructor is associated with at most one student via *advisor*,
 - and a student is associated with several (including 0) instructors via *advisor*

Many-to-Many Relationship

- An instructor is associated with several (possibly 0) students via advisor
- A student is associated with several (possibly 0) instructors via *advisor*

Participation of an Entity Set in a Relationship Set

- Total participation (indicated by double line): every entity in the entity set participates in at least one relationship in the relationship set
 - E.g., participation of *section* in *sec_course* is total
 - every *section* must have an associated course
- Partial participation: some entities may not participate in any relationship in the relationship set
 - Example: participation of *instructor* in *advisor* is partial

Alternative Notation for Cardinality Limits

 Cardinality limits can also express participation constraints

Weak Entity Sets 弱实体集 [了解]

- An entity set that does not have a primary key is referred to as a **weak entity set**.
- The existence of a weak entity set depends on the existence of a identifying entity set 标志性实体集
 - It must relate to the identifying entity set via a total, one-to-many relationship set from the identifying to the weak entity set
 - Identifying relationship 标志性联系 depicted using a double diamond
- The **discriminator** (*or partial key*) of a weak entity set is the set of attributes that distinguishes among all the entities of a weak entity set.
- The primary key of a weak entity set is formed by the primary key of the strong entity set on which the weak entity set is existence dependent, plus the weak entity set's discriminator.

Weak Entity Sets (Cont.) [了解]

- We underline the discriminator of a weak entity set with a dashed line.
- We put the identifying relationship of a weak entity in a double diamond.
- Primary key for *section* (*course_id, sec_id, semester, year*)

Weak Entity Sets (Cont.) [了解]

- Note: the primary key of the strong entity set is not explicitly stored with the weak entity set, since it is implicit in the identifying relationship.
- If *course_id* were explicitly stored, *section* could be made a strong entity, but then the relationship between *section* and *course* would be duplicated by an implicit relationship defined by the attribute *course_id* common to *course* and *section*

Reduction to Relation Schemas 转为关系模式 [掌握]

- Entity sets and relationship sets can be expressed uniformly as *relation schemas* that represent the contents of the database.
- A database which conforms to an E-R diagram can be represented by a collection of schemas.
- For each entity set and relationship set there is a unique schema that is assigned the name of the corresponding entity set or relationship set.
- Each schema has a number of columns (generally corresponding to attributes), which have unique names.

Representing Entity Sets With Simple Attributes [掌握]

- A strong entity set reduces to a schema with the same attributes student(<u>ID</u>, name, tot_cred)
- A weak entity set becomes a table that includes a column for the primary key of the identifying strong entity set section (<u>course_id, sec_id, sem, year</u>)

Representing Relationship Sets [掌握]

- A many-to-many 多对多 relationship set is represented as a schema with attributes for the primary keys of the two participating entity sets, and any descriptive attributes of the relationship set.
- Example: schema for relationship set *advisor*

advisor = (<u>s_id, i_id</u>)

Redundancy of Schemas [掌握]

- Many-to-one and one-to-many relationship sets that are total on the many-side can be represented by adding an extra attribute to the "many" side, containing the primary key of the "one" side
- Example: Instead of creating a schema for relationship set *inst_dept*, add an attribute *dept_name* to the schema arising from entity set *instructor*

Redundancy of Schemas (Cont.) [掌握]

- For one-to-one relationship sets, either side can be chosen to act as the "many" side
 - That is, extra attribute can be added to either of the tables corresponding to the two entity sets
- If participation is *partial* on the "many" side, replacing a schema by an extra attribute in the schema corresponding to the "many" side could result in null values (允许空值)
- The schema corresponding to a relationship set linking a weak entity set to its identifying strong entity set is redundant.
 - Example: The *section* schema already contains the attributes that would appear in the *sec_course* schema

Composite and Multivalued Attributes [掌握]

- Composite attributes are flattened out 变 $\overline{\Psi}$ by creating a separate attribute for each component attribute
 - Example: given entity set *instructor* with composite attribute *name* with component attributes *first_name* and *last_name* the schema corresponding to the entity set has two attributes name first name and name last name
 - Prefix omitted if there is no ambiguity
- Ignoring multivalued attributes, extended instructor schema is
 - instructor(ID,

first_name, middle_initial, last_name, *street_number, street_name,* apt_number, city, state, zip_code, date of birth)

name first_name middle initial last name address street street_number street_name *apt_number* city state zip { phone_number } *date_of_birth* age ()

instructor

ID

- A multivalued attribute *M* of an entity *E* is represented by a separate schema *EM*
 - Schema EM has attributes corresponding to the primary key of E and an attribute corresponding to multivalued attribute M
 - Example: Multivalued attribute *phone_number* of *instructor* is represented by a schema:

inst_phone=(ID, phone_number)

- Each value of the multivalued attribute maps to a separate tuple of the relation on schema *EM*
 - For example, an *instructor* entity with primary key 22222 and phone numbers 456-7890 and 123-4567 maps to two tuples:

(22222, 456-7890) and (22222, 123-4567)

E-R模式转表的步骤 [掌握]

- •1将实体集转为表,暂时不要写后括号
 - 特殊情况: 弱实体集加入标志实体集的主键
 - •复合属性拉平,派生属性忽略
 - 多值属性创建新表
- •2 将多对多关系集转为表, 表的内容为两个实体集的主键
- •3 将多对一/一对多/一对一关系集,在"多"实体集一方的末尾,加上"一"实体集的主键,加上后括号
 - •特殊情况:弱实体集中间的关系集,可以忽略

7.7 Design Issues 设计问题 [了解]

• Use of entity sets vs. attributes

• Use of phone as an entity allows extra information about phone numbers (plus multiple phone numbers)

Design Issues [了解]

• Use of entity sets vs. relationship sets

Possible guideline is to designate a relationship set to describe an action that occurs between entities

Design Issues [了解]

Binary versus n-ary relationship sets

Although it is possible to replace any nonbinary (*n*-ary, for n > 2) relationship set by a number of distinct binary relationship sets, a *n*-ary relationship set shows more clearly that several entities participate in a single relationship.

Placement of relationship attributes

e.g., attribute *date* as attribute of *advisor* or as attribute of *student*

- Some relationships that appear to be non-binary may be better represented using binary relationships
 - E.g., A ternary relationship *parents*, relating a child to his/her father and mother, is best replaced by two binary relationships, *father* and *mother*
 - Using two binary relationships allows partial information (e.g., only mother being know)
 - But there are some relationships that are naturally non-binary
 - Example: proj_guide

7.8 Extended E-R Features: Specialization 特化 [掌握]

- Top-down design process; we designate subgroupings within an entity set that are distinctive from other entities in the set.
- These subgroupings become lower-level entity sets that have attributes or participate in relationships that do not apply to the higher-level entity set.
- Depicted by a *triangle* component labeled ISA (E.g., *instructor* "is a" *person*).
- Attribute inheritance a lower-level entity set inherits all the attributes and relationship participation of the higher-level entity set to which it is linked.

Extended ER Features: Generalization

- A bottom-up design process combine a number of entity sets that share the same features into a higher-level entity set.
- Specialization and generalization are simple inversions of each other; they are represented in an E-R diagram in the same way.
- The terms specialization and generalization are used interchangeably.

Specialization and Generalization (Cont.)

- Can have multiple specializations of an entity set based on different features.
- E.g., *permanent_employee* vs. *temporary_employee*, in addition to *instructor* vs. *secretary*
- Each particular employee would be
 - a member of one of *permanent_employee* or *temporary_employee*,
 - and also a member of one of *instructor*, *secretary*
- The ISA relationship also referred to as **superclass subclass** relationship

Design Constraints on a Specialization/Generalization [理解]

- Constraint on which entities can be members of a given lowerlevel entity set.
 - condition-defined 条件定义的
 - Example: all customers over 65 years are members of *senior-citizen* entity set; *senior-citizen* ISA *person*.
 - user-defined 用户定义的
- Constraint on whether or not entities may belong to more than one lower-level entity set within a single generalization.
 - Disjoint 不相交
 - an entity can belong to only one lower-level entity set
 - Noted in E-R diagram by having multiple lower-level entity sets link to the same triangle
 - Overlapping 重叠
 - an entity can belong to more than one lower-level entity set

转表的方法:保留父类表;每个特化实体继承其父类的主键即可。

Summary of Symbols Used in E-R Notation

E A1 A2 A2.1 A2.2 {A3} A40

attributes: simple (A1), composite (A2) and multivalued (A3) derived (A4)

E

A1

primary key

in

discriminating attribute of weak entity set

Symbols Used in E-R Notation (Cont.)

Alternative ER Notations

• Chen, IDE1FX, …

entity set E with simple attribute A1, composite attribute A2, multivalued attribute A3, derived attribute A4, and primary key A1

Alternative ER Notations

UML

• UML: Unified Modeling Language

- UML has many components to graphically model different aspects of an entire software system
- UML Class Diagrams correspond to E-R Diagram, but several differences.

ER Diagram Notation

Ε

A1

M1()

entity with

composite,

attributes (simple,

multivalued, derived)

Equivalent in UML

class with simple attributes and methods (attribute prefixes: + = public, -= private, # = protected)

小结

- •实体属性:简单、复合、多值、派生
- 掌握设计E-R模型的方法
 - 实体之间必须要有关系相连
 - •关系的类型:一对多、多对多、一对一;全部参加
 - 角色
 - 特化/概化
- 掌握将E-R模型转为关系模型的方法

谢谢!

liuyuewen@xjtu.edu.cn