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NETWORK VECTOR AUTOREGRESSION
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Peking University,∗ Central University of Finance and Economics,†

University of Hong Kong‡ and Xi’an Jiaotong University§

We consider here a large-scale social network with a continuous response
observed for each node at equally spaced time points. The responses from
different nodes constitute an ultra-high dimensional vector, whose time se-
ries dynamic is to be investigated. In addition, the network structure is also
taken into consideration, for which we propose a network vector autoregres-
sive (NAR) model. The NAR model assumes each node’s response at a given
time point as a linear combination of (a) its previous value, (b) the average of
its connected neighbors, (c) a set of node-specific covariates and (d) an inde-
pendent noise. The corresponding coefficients are referred to as the momen-
tum effect, the network effect and the nodal effect, respectively. Conditions
for strict stationarity of the NAR models are obtained. In order to estimate
the NAR model, an ordinary least squares type estimator is developed, and
its asymptotic properties are investigated. We further illustrate the usefulness
of the NAR model through a number of interesting potential applications.
Simulation studies and an empirical example are presented.

1. Introduction. Consider a large-scale social network (e.g., Facebook or
Twitter) with N nodes (i.e., users) indexed by 1 ≤ i ≤ N . Throughout the rest
of this article, we refer to N as the network size. To describe the network struc-
ture, define an adjacency matrix A = (ai1i2) ∈ RN×N , where ai1i2 = 1 if there
exists a social relationship (i.e., a directed edge) from i1 to i2 (e.g., user i1 fol-
lows i2 on Twitter), and ai1i2 = 0 otherwise [32]. Theoretically, we assume that
A is nonrandom throughout the rest of this article. It can be both directed (i.e.,
A� �= A) or undirected (i.e., A� = A). We follow the convention and do not allow
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any node to be self-related, so that aii = 0 for any 1 ≤ i ≤ N (e.g., any Twit-
ter user cannot follow itself). Let Yit ∈ R1 be the continuous response obtained
from node i at time point t (e.g., log-transformed total tweet length). Accordingly,
Yt = (Y1t , . . . , YNt )

� ∈ RN constitutes an ultra-high dimensional vector with a
very large N , and its time series dynamic needs to be statistically modeled and
theoretically investigated.

Note that Yt ∈RN with 0 ≤ t ≤ T is an ultra-high dimensional time series. Con-
sequently, it has a close relationship with multivariate time series literature [4, 11,
15, 23, 30]. For a usual multivariate time series, the following common wisdoms
exist. The first one is to model each individual time series (i.e., Yit with 0 ≤ t ≤ T

but for a fixed i) separately [5, 8, 25]. This approach is simple in both theory and
computation. However, the relationship across different time series is lost. As an
alternative, one can model Yt by a vector autoregressive (VAR) model [3, 22].
Accordingly, the information of all time series is fully considered. However, the
number of parameters need to be estimated is of O(N2), which could be much
larger than T , if N is sufficiently large. Therefore, many efforts have been taken
to reduce parameter dimension by either sparse estimation [16, 18] or dimension
reduction [10, 24, 29]. In particular, dimension reduction by factor modeling has
been proved very useful; see, for example, [13, 27, 28] and [19] for some inter-
esting discussions. To our best knowledge, none of these methods have taken the
observed social relationships (i.e., network structure) into consideration. This is
the key contribution we intend to make in this work.

Under a network framework, Yit might be affected by four different factors.
First, Yit might be affected by itself but from the previous time point, which is
Yi(t−1). Second, Yit might be affected by its followees, which are collected by
{j : aij = 1}. Third, Yit might also be affected by a set of node-specific covariates
(denoted by a p-dimensional vector Zi ∈ Rp). Lastly, the unexplained variation
should be attributed to an independent random noise. As a result, we propose a
network vector autoregressive (NAR) model, which assumes that Yit is a linear
combination of: (a) Yi(t−1), (b) n−1

i

∑
j aijYj (t−1) with ni = ∑

j aij , (c) node-
specific covariates Zi , and (d) an independent noise. The associated coefficients
are then referred to as the momentum effect, the network effect and the nodal ef-
fect, respectively.

Compared with a usual VAR model, where the total number of parameters di-
verges with N , the total number of unknown parameters in a NAR model is fixed.
Consequently, the NAR model can be easily estimated for large-scale social net-
works. In particular, an ordinary least squares type estimator is proposed, and its
asymptotic properties are investigated. Furthermore, the NAR model’s strictly sta-
tionary solutions are obtained. This leads to a number of interesting potential ap-
plications.

The rest of the article is organized as follows. Section 2 introduces the NAR
model with both asymptotic theory and a p-lag extension. Section 3 describes
two potential applications. Extensive numerical studies are given in Section 4. The
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article is concluded with a brief discussion in Section 5. All technical details are
left to the Appendix.

2. Network vector autoregression.

2.1. Model and notation. Recall that N is the network size and Yit is the re-
sponse collected from the ith subject at time point t . In addition, for each node i,
assume a p-dimensional node-specific random vector Zi = (Zi1, . . . ,Zip)� ∈ Rp

can be observed. To model Yit , we propose the following NAR model:

(2.1) Yit = β0 + Z�
i γ + β1n

−1
i

N∑
j=1

aijYj (t−1) + β2Yi(t−1) + εit ,

where ni = ∑
j �=i aij is the total number of nodes that i follows, and it is called

out-degree [32]. This model implicitly assumes that the focal node i is unlikely to
be affected by another node j , unless i follows j . This is true in practice since the
activities of nodes with aij = 0 are invisible to i. Specifically, the term β0 + Z�

i γ

characterizes the nodal impact of the ith node, where β0 ∈ R1 is the intercept and
γ = (γ1, . . . , γp)� ∈ Rp is the associated coefficient (i.e., nodal effect). For con-
venience, we write β0i = β0 + Z�

i γ . As one can see, the nodal impact (i.e., β0i )
is invariant over time t . The quantity n−1

i

∑N
j=1 aijYj (t−1) is the average impact

from ith neighbors [1, 12, 20, 21]. Its associated parameter β1 is referred to as
the network effect. The term Yi(t−1) is the standard autoregressive impact, and β2
is referred to as the momentum effect. Moreover, εit is the error term indepen-
dent of Zi’s, which follows normal distribution with E(εit ) = 0 and var(εit ) = σ 2.
Although it is more flexible to allow the error terms (i.e., εit ’s) to be correlated,
however, this might lead to large amount of unknown parameters. To reduce the
dimensionality, a diagonal covariance structure is assumed in this work.

For convenience, define Z = (Z1, . . . ,ZN)� ∈ RN×p and B0 = (β01, . . . ,

β0N)� = β01 + Zγ ∈ RN , where 1 = (1, . . . ,1)� is a vector with compatible di-
mension. Recall Yt = (Y1t , . . . , YNt )

� ∈ RN . Then we can rewrite model (2.1) in
a vector form as

(2.2) Yt = B0 + GYt−1 + Et ,

where G = β1W + β2I , W = diag{n−1
1 , . . . , n−1

N }A is the row-normalized ad-
jacency matrix, I is an identity matrix with compatible dimension, and Et =
(ε1t , . . . , εNt )

� ∈ RN is the innovation vector. Since A is assumed to be nonran-
dom in this work, both G and W are nonstochastic. However, B0 is random.

2.2. Strict stationarity: Type I. Since Yt is a time series, it is of interest to
study its stationary distribution. According to whether N is fixed or N → ∞, we
can define two different types of stationarities. They are referred to as, respectively,
Type I (N is fixed) and Type II (N → ∞). We start with Type I stationarity, because
its discussion is similar to that of the classical time series model.
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THEOREM 1. Suppose that E‖Zi‖ < ∞ and N is fixed. If |β1|+|β2| < 1, then
there exists a unique strictly stationary solution with a finite first-order moment to
the NAR model (2.2). The solution has the form of

(2.3) Yt = (I − G)−1B0 +
∞∑

j=0

GjEt−j .

The proof of Theorem 1 is given in a separate technical Appendix containing
supplementary materials. Based on the strict stationary solution (2.3), it is inter-
esting to obtain its conditional distribution given the nodal information (i.e., Z).
For convenience, define E∗(·) = E(·|Z) and cov∗(·) = cov(·|Z). For any integer h,
further denote the conditional auto-covariance function as �(h) = cov∗(Yt ,Yt−h).
One could easily verify that, �(h) = Gh�(0) for h > 0, and �(h) = �(0)(G�)−h

for h < 0. By calculation similar to [22] (pages 28–29), the conditional mean and
covariance of Yt can be obtained in the following proposition.

PROPOSITION 1. Assume the same conditions as in Theorem 1. Then given Z,
the strictly stationary solution in (2.3) follows a normal distribution with mean
and covariance given by

μ = (I − G)−1B0 = (I − β1W − β2I )−1B0,(2.4)

vec
{
�(0)

} = σ 2(I − G ⊗ G)−1 vec(I ).(2.5)

Here, vec(·) is the usual operator stacking the columns of a given matrix, and ⊗
is the Kronecker product.

By (2.4), the conditional mean of Yt is determined by four factors. They are the
nodal impact B0, the network effect β1, the momentum effect β2, and the network
structure W (i.e., A). To better interpret Proposition 1, we consider some special
and interesting cases for discussions.

Case 1. Assume β0i = β0 for every 1 ≤ i ≤ N . In this case, we implicitly as-
sume that γj = 0 for every 1 ≤ j ≤ p so that all the nodes have the same nodal
impact. Without loss of generality, we assume that β0 > 0. It can be verified that 1
is an eigenvector of (I −β1W −β2I )−1 with eigenvalue (1−β1 −β2)

−1, and recall
that 1 = (1, . . . ,1)� is a vector with compatible dimension. Accordingly, we have
(I − β1W − β2I )−11 = (1 − β1 − β2)

−11. Consequently, the conditional mean of
response at each node has the same analytical form, which is referred to as nodal
mean and is given by E∗(Yit ) = β0(1 −β1 −β2)

−1. In this case, the nodal mean is
no longer influenced by the network structure. Further, note that E∗(Yit ) → ∞, as
β1 + β2 → 1. This indicates that the larger network effect (i.e., β1) and/or larger
momentum effect (i.e., β2) all lead to a higher nodal mean.
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Case 2. Assume aij = 1 for any i �= j . In this case, all the nodes follow each
other, and thus the network is fully connected and very dense. This would never
happen in real practice but is still discussed here for the sake of theoretical com-
pleteness. Under this assumption, one can verify that (I − β1W − β2I )−1 =
τ1I + τ211�, where τ1 = {1+ (N −1)−1β1 −β2}−1, and τ2 = τ1β1(N −1)−1(1−
β1 − β2)

−1. Then, according to (2.4), the nodal mean can be derived as E∗(Yit ) =
τ1β0i + τ21�B0, where the difference lies in β0i for different nodes. Under the sta-
tionary condition |β1| + |β2| < 1, one can easily verify that τ1 > 0. Accordingly,
the node with larger nodal impact (i.e., β0i ) should have larger nodal mean.

Case 3. First-order Taylor’s expansion. With a general network structure, it is
difficult to interpret formula (2.4) and (2.5). As a compromise, we consider to ap-
proximate both E∗(Yt ) and cov∗(Yt ) by their first order Taylor’s expansion with
respect to β1. As one can expect, such an approximation could be poor (good),
if |β1| is large (small). However, it does give us a quick opportunity to explore
theoretical insights. More specifically, we have verified, in a separate technical ap-
pendix containing supplementary materials, that the first-order Taylor’s expansion
is given by

E∗(Yt ) ≈ B0

1 − β2
+ β1

(1 − β2)2 WB0,(2.6)

cov∗(Yt ) ≈ σ 2

1 − β2
2

I + σ 2β1β2

(1 − β2
2 )2

(
W + W�)

.(2.7)

By (2.6), we have that E∗(Yit ) ≈ (1 − β2)
−1β0i + (1 − β2)

−2β1(
∑

j aijβ0j )/ni .
Note that (

∑
j aijβ0j )/ni is the average nodal impact from i’s neighbors. We

refer to it as the local impact for node i and denote it as li . As a result, (2.6)
suggests that larger nodal impact and local impact both lead to a higher nodal
mean. By (2.7), we find that the variance of an arbitrary node is (1 − β2

2 )−1σ 2

approximately, which is only determined by the momentum effect β2 and the
variance of εit . In addition, the covariance of nodes i1 and i2 is given by
σ 2(1 − β2

2 )−2β1β2(ai1i2/ni1 + ai2i1/ni2). This indicates that nodes following each
other (i.e., ai1i2 = ai2i1 = 1) are more likely to be correlated than those discon-
nected ones (i.e., ai1i2 = ai2i1 = 0). The correlation could be even stronger if both
nodes are loyal to each other, in the sense that they do not follow many other nodes
(i.e., small ni1 and ni2 ).

2.3. Strict stationarity: Type II. Next, we investigate the Type II strict station-
arity with N → ∞. It is remarkable that the dimension of Yt (i.e., N ) is diverging,
so how to define stationarity is challenging. To our best knowledge, there exists no
widely accepted general definition. As one possible solution, we attempt to give
one definition as follows.
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DEFINITION 1. Let {Yt ∈ RN } be a N -dimensional time series with N → ∞.
Define W = {ω ∈ R∞ : ∑ |ωi | < ∞}, where ω = (ωi ∈ R1 : 1 ≤ i ≤ ∞)� ∈ R∞.
For each ω ∈ W , let wN = (ω1, . . . ,ωN)� ∈ RN be the truncated N -dimensional
vector. {Yt } is then said to be strictly stationary, if it satisfies the following con-
ditions: for any ω ∈ W , (1) Yω

t = limN→∞ w�
NYt exists in the almost sure sense;

and (2) {Yω
t } is strictly stationary. Moreover, {Yt } is said to have finite mth order

moment if max1≤i<∞ E|Yit |m < ∞.

In the usual situation with a fixed N , one can verify that {Yt } is strictly sta-
tionary if and only if {w�

NYt } is strictly stationary for any wN ∈ RN . As a result,
Definition 1 can be viewed as an extension from the usual stationarity with fixed
N to the diverging case. We then have the following theorem for the NAR model.
The proof is given in Appendix A.1.

THEOREM 2. Assume the same conditions as in Theorem 1 with N → ∞.
Then the solution defined in (2.3) is a unique strictly stationary solution (in the
sense of Definition 1) to the NAR model with finite first-order moment.

2.4. Parameter estimation. Let β = (β0, β1, β2)
� ∈ R3 and θ = (θj )

� =
(β�, γ �)� ∈ Rp+3. In order to estimate the unknown parameter θ , we rewrite
the NAR model in (2.1) as

(2.8) Yit = β0 + β1w
�
i Yt−1 + β2Yi(t−1) + Z�

i γ + εit = X�
i(t−1)θ + εit ,

where Xi(t−1) = (1,w�
i Yt−1, Yi(t−1),Z

�
i )� ∈ Rp+3, and wi = (aij /ni : 1 ≤ j ≤

N)� ∈ RN is the ith row vector of W . Further, denote Xt = (X1t ,X2t , . . . ,

XNt )
� ∈ RN×(p+3). Then model (2.8) can be rewritten in vector form as Yt =

Xt−1θ + Et . As a result, an ordinary least squares type estimator can be obtained
as

(2.9) θ̂ =
(

T∑
t=1

X�
t−1Xt−1

)−1 T∑
t=1

X�
t−1Yt ,

whose asymptotic properties are to be investigated subsequently. To this end, we
need the following technical conditions:

(C1) Nodal Assumption) Assume that Zi’s are independent and identically dis-
tributed random vectors, with mean 0 and covariance 
z ∈ Rp×p . Further-
more, its fourth-order moment is finite. The same assumption is also needed
for εit across both 1 ≤ i ≤ N and 0 ≤ t ≤ T . Moreover, we need {Zi} and
{εit } to be mutually independent.

(C2) (Network Structure) Assume W is a sequence of matrices indexed by N .
They are assumed to be nonstochastic.
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(C2.1) (Connectivity) Treat W as a transition probability matrix of a Markov
chain, whose state space is defined as the set of all the nodes in
the network (i.e., {1, . . . ,N}). We assume the Markov chain is ir-
reducible and aperiodic. Further, define π = (π1, . . . , πN)� ∈RN as
the stationary distribution of the Markov chain, such that (a) πi ≥ 0
and

∑N
i=1 πi = 1, (b) π = W�π . Furthermore,

∑N
i=1 π2

i is assumed
to converge to 0 as N → ∞.

(C2.2) (Uniformity) Define W ∗ = W +W� as a symmetric matrix. Assume
λmax(W

∗) = O(logN), where λmax(M) stands for the largest abso-
lute eigenvalue of an arbitrary symmetric matrix M .

(C3) (Law of Large Numbers) Define Q = (I − G)−1(I − G�)−1, and recall
G = β1W + β2I . Assume the following limits exist. They are, respec-
tively, κ1 = limN→∞ N−1 tr{�(0)}, κ2 = limN→∞ N−1 tr{W�(0)}, κ3 =
limN→∞ N−1 tr{(I − G)−1} and κ4 = limN→∞ N−1 tr(Q). Here, κ1, κ2, κ3
and κ4 are fixed constants.

Condition (C1) provides some basic assumptions for nodal variables Zi and εit ,
so that the standard law of large numbers and central limit theorem can be applied.
In fact, this assumption can be moderately relaxed so that different Zis and εit ’s are
weakly dependent, as long as the law of large numbers and central limit theorem
hold.

Condition (C2) is about the network structure (i.e., A or W ). It can be further
divided into two sub-conditions. First, (C2.1) assumes that all the nodes are reach-
able to each other (i.e., irreducibility). Specifically, for two arbitrary nodes i and j ,
there should be a path of finite length connecting i to j . Otherwise, one can assume
that there exist two sets of nodes, and the nodes from different sets are completely
disconnected with each other. Then those two sets of nodes can be modeled sepa-
rately. A simple sufficient condition for both irreducibility and aperiodicity is that
the network is always fully connected after a finite number of steps. That is, there
exists an n∗ such that, for any n ≥ n∗, each component in Wn is always positive.
Accordingly, the network structure discussed in Case 2 in Section 2.2 satisfies this
sufficient condition. Second, (C2.2) requires that the network structure should ad-
mit certain uniformity property so that the diverging rate of λmax(W

∗) should be
sufficiently slow.

Lastly, condition (C3) is a law of large numbers type assumption. To see this
consider, for example, the first condition in (C3), that is, κ1 = limN→∞ N−1 ×
tr{�(0)} = N−1 ∑N

i=1 var∗(Yit ). Heuristically, if we treat σ 2
i = var∗(Yit ) as if

they were independent and identically generated random variables, then this is
a law of large numbers type assumption. With the help of (C3), we can ver-
ify that the following limits also exist. They are κ5 = limN→∞ N−1 tr(WQW�),
κ6 = limN→∞ N−1 tr{W�(0)W�}, κ7 = limN→∞ N−1 tr(WQ) and κ8 =
limN→∞ N−1 tr{W(I − G)−1}. In fact, we have κ5 = (a + b)2κ4 − 2(a + b)bκ3 +
b2, κ6 = (a2 + 2abβ2 + b2)κ1 + 2aκ2 − b2σ 2, κ7 = (a + b)κ4 − bκ3 and κ8 =
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(a + b)κ3 − b. Here, W = aI + bG, where a = −β−1
1 β2, and b = β−1

1 . In addi-
tion, one can easily verify that all the limits (i.e., {κ1, . . . , κ8}) exist even when
β1 = 0, as long as the limit of N−1 tr{WW�} exists. We then have the following
theorem.

THEOREM 3. Assume the stationary condition |β1| + |β2| < 1 and techni-
cal conditions (C1)–(C3) hold, we then have

√
NT (θ̂ − θ) →d N(0, σ 2
−1) as

min{N,T } → ∞, where

(2.10) 
 =

⎛⎜⎜⎜⎝
1 cβ cβ 0�
cβ 
1 
2 κ8γ

�
z

cβ 
2 
3 κ3γ
�
z

0 κ8
zγ κ3
zγ 
z

⎞⎟⎟⎟⎠ ,

cβ = β0(1 − β1 − β2)
−1, 
1 = c2

β + κ5γ
�
zγ + κ6, 
2 = c2

β + κ7γ
�
zγ + κ2,


3 = c2
β +κ4γ

�
zγ +κ1, and 0 = (0, . . . ,0)� is a vector with compatible dimen-
sion.

The proof of Theorem 3 is given in Appendix A.2. By Theorem 3, we know that
θ̂ is

√
NT -consistent with asymptotic variance σ 2
−1.

It is remarkable that Theorem 3 requires both N → ∞ and T → ∞. For the
sake of completeness, we might also want to investigate the other two types of
asymptotics. One is that N is fixed but T → ∞, and the other one is that T is fixed
but N → ∞. However, the nodal effect γ is only associated with nodal information
Zi . Therefore, to estimate γ consistently, we must have ample amount of informa-
tion about Zi . As a result, N is required to be diverging, and no consistency result
can be established for θ̂ with fixed N . In contrast, our theoretical analysis shows
that both the consistency and asymptotic normality can be established for θ̂ with
fixed T but N → ∞. The main results are given in the following proposition.

PROPOSITION 2. Assume T is fixed and conditions in Theorem 3 hold. Then
we have

√
N(θ̂ − θ) →d N(0, σ 2T −1
−1) as N → ∞.

The proof of Proposition 2 is given in a separate technical Appendix contain-
ing supplementary materials. By Proposition 2, the estimated parameter θ̂ is

√
N -

consistent with fixed T . This enables us to obtain a consistent estimator even with
limited time periods.

2.5. General NAR(p) model. Note that the proposed NAR model (2.1) con-
siders only one lag. For simplicity, we refer to it as a NAR(1) model. As a flexible
extension, one could consider the NAR(p) model as follows:

(2.11) Yit = β0 + Z�
i γ +

p∑
m=1

αmn−1
i

N∑
j=1

aijYj (t−m) +
p∑

m=1

βmYi(t−m) + εit .



1104 X. ZHU ET AL.

Let Y∗
t = (Y�

t ,Y�
t−1, . . . ,Y

�
t−p+1)

� ∈ RNp . Then the NAR(p) model (2.11) can
be expressed in vector form as

(2.12) Y∗
t = B∗

0 + G∗Y∗
t−1 + E∗

t ,

with B∗
0 = (B�

0 ,0�
N(p−1))

� ∈RNp , E∗
t = (E�

t ,0�
N(p−1))

� ∈ RNp , and

G∗ =
(

A αpW + βpIN

IN(p−1) ON(p−1),N

)
,

where A = (α1W + β1IN, . . . , αp−1W + βp−1IN) ∈ RN×N(p−1), 0n is the n-
dimensional zero vector, On1,n2 is the n1 × n2 dimensional zero matrix, and In

is the n × n dimensional identity matrix. Similarly, we give the strictly stationary
solution of NAR(p) model in the next theorem.

THEOREM 4. Assume E‖Zi‖ ≤ ∞. If
∑p

m=1(|αm| + |βm|) < 1, then there
exists a unique strictly stationary solution with finite first-order moment to the
NAR(p) model (2.11). The solution takes the form Yt = IY∗

t , where Y∗
t = (I −

G∗)−1B∗
0 +∑∞

j=0 G∗jE∗
t−j , I(I −G∗)−1B∗

0 = (I − G̃)−1B0, G̃ = ∑p
m=1(αmW +

βmIN), and I = {IN,ON,N(p−1)}.
The proof of Theorem 4 is given in a separate technical Appendix containing

supplementary materials. It is remarkable that the solution, given in Theorem 4, is
the unique strictly stationary solution of NAR(p) model, regardless of whether N

is fixed or N → ∞.
We next consider the estimation of NAR(p) model (2.11). Assume the dimen-

sion of Zi is q throughout this subsection. Then write X∗
i(t−1) = {1,w�

i Yt−1, . . . ,

w�
i Yt−p,Yi(t−1), . . . , Yi(t−p),Z

�
i }� ∈ R2p+q+1 and X∗

t−1 = (X∗
1(t−1), . . . ,

X∗
N(t−1))

� ∈ RN×(2p+q+1). Further, write θ∗ = (β0, α
�, β�, γ �)� ∈ R2p+q+1,

where α = (α1, . . . , αp)� and β = (β1, . . . , βp)�. Then (2.11) can be written as
Yt = X∗

t−1θ
∗ +Et . The corresponding ordinary least squares type estimator can be

derived as

(2.13) θ̂∗ =
(

T∑
t=p+1

X∗
t−1

�
X∗

t−1

)−1 T∑
t=p+1

X∗�
t−1Yt .

We next investigate the asymptotic properties of θ̂∗. To this end, define �∗(h) =
cov∗(Yt ,Yt−h) to be the conditional auto-covariance function for the NAR(p)

model under strict stationarity. The following condition is required:

(C4) Assume the following limits exist as, ν1(h) = limN→∞ N−1W�∗(h)W�,
ν2(h) = limN→∞ N−1W�∗(h), ν3(h) = limN→∞ N−1�∗(h) for 0 ≤ h ≤ p − 1,
and κ∗

3 = limN→∞ N−1 tr{(I − G̃)−1}, κ∗
4 = limN→∞ N−1 tr(Q̃), κ∗

5 =
limN→∞ N−1 tr(WQ̃W�), κ∗

7 = limN→∞ N−1 tr(WQ̃), κ∗
8 = limN→∞ N−1 ×

tr{W(I − G̃)−1}, where Q̃ = (I − G̃)−1(I − G̃�)−1.

We then have the following theorem.
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THEOREM 5. Assume
∑p

m=1(|αm| + |βm|) < 1 and the technical condi-
tions (C1), (C2), (C4) hold. We then have

√
NT (θ̂∗ − θ∗) →d N(0, σ 2
∗−1) as

min{N,T } → ∞, where


∗ =

⎛⎜⎜⎜⎜⎝
1 c∗

β1�
p c∗

β1�
p 0�

q

c∗
β1p 
∗

1 
∗
2 1p

(
κ∗

8 γ �
z

)
c∗
β1p 
∗

2
�


∗
3 1p

(
κ∗

3 γ �
z

)
0q

(
κ∗

8 
zγ
)
1�
p

(
κ∗

3 
zγ
)
1�
p 
z

⎞⎟⎟⎟⎟⎠ ,

c∗
β = {1 − ∑p

m=1(αm + βm)}−1β0, 
∗
1 = {
∗

1,(m1,m2)
} ∈ Rp×p with 
∗

1,(m1,m2)
=

c∗
β

2 + κ∗
5 γ �
zγ + ν1(m1 − m2), 
∗

2 = {
∗
2,(m1,m2)

} ∈ Rp×p with 
∗
2,(m1,m2)

=
c∗
β

2 + κ∗
7 γ �
zγ + ν2(m1 − m2), 
∗

3 = {
∗
3,(m1,m2)

} ∈ Rp×p with 
∗
3(m1,m2)

=
c∗
β

2 + κ∗
4 γ �
zγ + ν3(m1 − m2), and 1p = (1, . . . ,1)� is a p-dimensional vec-

tor with all elements to be 1.

The proof of Theorem 5 is given in a separate technical Appendix containing
supplementary materials.

3. Potential applications.

3.1. Network structure analysis. To demonstrate the usefulness of the pro-
posed NAR model, we next consider a number of interesting potential applica-
tions. We start with network structure analysis. By Proposition 1, the conditional
mean is given by E∗(Yt ) = (I − β2I − β1W)−1B0. For a more intuitive discus-
sion, we assume that Yit is the measure for the ith node’s activeness at time t .
Then the expected average network activeness (EANA) is given by 1�E∗(Yt )/N .
Next, how to maximize this quantity becomes an important problem. Previous dis-
cussion shows that identical nodal impact (i.e., βi0 = β0) leads to the same nodal
mean with EANA given by β0(1 − β1 − β2)

−1. In this case, EANA is free of the
network structure, and cannot be maximized by optimizing network structure. To
make our discussion meaningful, we assume nonidentical nodal impact through-
out the rest of this subsection. Similar to Case 3 in Section 2.2, we also employ
the Taylor’s expansion technique, which greatly simplifies the theoretical results.
Consequently, we can focus on the leading terms, which leads to fruitful insights
and interpretations.

We start with the simplest network structure change. Consider two different
nodes i and j where aij = 0. Then, by (2.6), the nodal mean for i is given by μi0 ≈
(1 − β2)

−1β0i + (1 − β2)
−2β1

∑
k �=j aikβ0k/ni . Now assume i starts to follow

j , that is, aij changes from 0 to 1. Then the nodal mean of i changes from μi0
to μi1 ≈ (1 − β2)

−1β0i + (1 − β2)
−2β1(

∑
k �=j aikβ0k + β0j )/(ni + 1) + op(β1).

Hence, the change in aij (from 0 to 1) leads to a change in the nodal mean for node
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i as

(3.1) μi1 − μi0 ≈ (1 − β2)
−2β1

(
β0j − ∑

k �=j

aikβ0k/ni

)/
(ni + 1).

Practically, the network effect β1 is typically expected to be positive [6].
Then the sign of the change is mainly determined by (β0j − ∑

k �=j aikβ0k/ni),
which involves the j th nodal impact (i.e., β0j ) and the ith local impact (i.e.,∑

k �=j aikβ0k/ni ). If the nodal impact of j is larger than the local impact of i,
then the ith nodal mean is expected to increase. Otherwise, it should decrease.

The above discussion leads to the following interesting findings, that is, the
nodal mean of an arbitrary node is likely to be increased by: either (1) following
nodes with nodal impact larger than its local impact, or (2) unfollowing nodes
with nodal impact smaller than its local impact. One can repeat this process for
each node till the network converges to an optimal structure. To gain some quick
insights, we assume that β0i are all different and the nodes are appropriately sorted
so that β01 > β02 > β0j for any j > 2. In this case, for any node i > 1 with ai1 = 0,
its nodal mean can always be increased by setting ai1 = 1 (i.e., following node
i = 1). Accordingly, we should have ai1 = 1 for any i > 1. Otherwise, the network
structure cannot be optimal. Next, for any node i with ni > 1, its nodal mean can
always be increased by unfollowing its neighbor with the smallest β0j value. As a
result, we should have ni = 1 and ai1 = 1 for every i > 1. For node i = 1, similar
argument leads to n1 = 1 and a12 = 1. In this case, one can verify that the value of
EANA could be approximated by

(3.2) (1 − β2)
−1N−1

∑
i

β0i + (1 − β2)
−2N−1(N − 1)β1β01.

For a large-scale network, we have (N − 1)/N ≈ 1. Hence, the above quantity
can be further approximated by (1 − β2)

−1N−1 ∑
i β0i + (1 − β2)

−2β1β01. It is
mainly determined by the average nodal impact (i.e., N−1 ∑

β0i ) and the largest
nodal impact β01.

3.2. Intervention analysis. We study in this subsection one type of interven-
tion analysis, which refers to some stimulus imposed on a set of nodes. The stimu-
lus aims at enhancing the network activeness as much as possible. If there were no
intervention, the network activeness would be fully determined by the NAR model
(2.1), which leads to a sequence of response vectors as {Yt } with t ≥ 0. Without
loss of generality, we assume that the intervention is given at time t = 0 to each
node i so that its initial activeness level can be increased from Yi0 to Yi0 + δi , for
some δi ≥ 0. Equivalently, Y0 is changed to Y0 + �, where � = (δ1, . . . , δN)�.
This leads to a stimulated new time series sequence, given by {Y∗

t } with t ≥ 0.
Both {Yt } and {Y∗

t } follow the same NAR model as given in (2.1), sharing the
same set of innovation process Et . The only difference is that {Yt } starts with Y0
while {Y∗

t } starts with Y0 + �. We can then evaluate the intervention effect by
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comparing the difference between Yt and Y∗
t . This leads to the total intervention

effect (TIE) given by TIE(�) = 1� ∑
t>0(Y

∗
t −Yt ). Practically, the resource (i.e.,∑

δi = 1��) that can be used is limited, and we assume that
∑

δi ≤ 1. It is then
of interest to maximize TIE(�) under the constraint 1�� ≤ 1.

It can be easily verified that Y∗
t = Yt + Gt�. As a result, TIE(�) = 1� ×∑

t>0(Y
∗
t − Yt ) = 1�(� + G� + · · · ) = 1�(I − G)−1�, under the stationary

condition of Theorem 1. Then the optimization problem becomes

max
�∈RN

TIE(�) = 1�(I − G)−1�,

(3.3)

such that
N∑

i=1

δi ≤ 1, δi ≥ 0, i = 1, . . . ,N.

Note that (3.3) is a linear function in � with coefficients given by ν = (ν1, . . . ,

νN)� = (I − G�)−11. Without loss of generality, we assume that the nodes are
appropriately sorted so that ν1 > ν2 > · · · > νN . One can verify that ν1 > 0. Ac-
cordingly, by standard linear programming theory [9], the solution to (3.3) is given
by �max = (1,0,0, . . . ,0)� ∈ RN . This suggests that all the resources should be
given to the node with the largest νi -values. For a practical interpretation, we refer
to νi as node i’s influential power.

It is then of interest to query which type of nodes is likely to have large νi -
values (i.e., influential powers). This amounts to computing ν = (I − G�)−11
and studying its relationship with the network structure A. Once again, we follow
Case 3 in Section 2.2 and use first-order Taylor’s expansion for approximation.
This enables us to approximate ν by (1 − β2)

−11 + (1 − β2)
−2β1W

�1. We then
have νi ≈ 1/(1 − β2) + (1 − β2)

−2β1
∑

j n−1
j aji . By assuming a positive network

effect β1 > 0, we then find that a node’s influential power is mainly determined by∑
j n−1

j aji , which is referred to as weighted degree. Nodes with larger weighted
degree are typically ones with a larger number of followers (i.e.,

∑
j aji ), and those

followers are loyal in the sense that their out-degree nj s are small. Consequently,
TIE(�max) = maxi νi ≈ 1/(1 − β2) + (1 − β2)

−2β1 maxi{∑j n−1
j aji}.

4. Numerical studies.

4.1. Simulation models. To demonstrate the finite sample performance of the
proposed methodology, we present in this subsection three examples. The main
difference is the generating mechanism of the adjacency matrix A and also the
specification of β = (β0, β1, β2)

� ∈ R3. Other than that, they are fairly similar.
Specifically, for each example, the random error εit is simulated from a standard
normal distribution N(0,1), and the covariate Zi = (Zi1, . . . ,Zi5)

� ∈ R5 is from
a multivariate normal distribution with mean 0 and covariance 
z = (σj1j2), where
σj1j2 = 0.5|j1−j2|. For each example, γ is fixed to be γ = (−0.5,0.3,0.8,0,0)�.
In order to generate Yt , an initial value Y0 is randomly simulated according to the
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stationary distribution as given in Proposition 1. Once Y0s are given, Yt s can be
generated according to (2.8).

EXAMPLE 1 (Dyad Independence Model). By [17], a dyad is defined as
Dij = (aij , aji) for any 1 ≤ i < j ≤ N . Dyad independence assumes that dif-
ferent Dij ’s are independent. In order to ensure network sparsity, we set P(Dij =
(1,1)) = 20N−1. As a result, the expected number of mutually connected dyads
[i.e., Dij = (1,1)] is of O(N). Next, set P(Dij = (1,0)) = P(Dij = (0,1)) =
0.5N−0.8. This makes the expected degree for each node O(N0.2), which di-
verges toward infinity as the network size N increases, but at a slow rate. Oth-
erwise, the network sparsity might be violated. Accordingly, we should have
P(Dij = (0,0)) = 1 − 20N−1 − N−0.8, which is very close to 1 for large N .
Lastly, fix T =10, 30, 100, and (β0, β1, β2)

� = (0.3,0.0,0.5)�.

EXAMPLE 2 (Stochastic Block Model). We next consider another popular
network structure, which is the stochastic block model [26, 31]. This model is
of particular interest for community detection [33]. Specifically, we follow [26],
and randomly assign for each node a block label (k = 1, . . . ,K) with equal prob-
ability, where K ∈ {5,10,20} is the total number of blocks. Next, set P(aij =
1) = 0.3N−0.3 if i and j belong to the same block, and P(aij = 1) = 0.3N−1

otherwise. Accordingly, the nodes within the same block are more likely to be
connected, as compared with nodes from different blocks. Lastly, fix T = 30 and
(β0, β1, β2)

� = (0.0,0.1,−0.2)�.

EXAMPLE 3 (Power-Law Distribution Model). By [2], a power-law distribu-
tion reflects a popular network phenomenon, that is, the majority of nodes have
very few edges but a small amount have a huge number of edges. To mimic this
phenomenon, we follow [7] and simulate A as follows. First, generate for each
node its in-degree di = ∑

j aji according to the discrete power-law distribution,
that is, P(di = k) = ck−α for a normalizing constant c and the exponent parame-
ter α ∈ {1.2,2,3}. Smaller α value implies a heavier distribution tail. Next, for the
ith node, we randomly select di nodes to be its followers. Lastly, fix T = 30 and
(β0, β1, β2)

� = (0.3,−0.1,0.5)�.

4.2. Performance measurements and simulation results. For each simu-
lation example, different network sizes are considered (i.e., N = 100, 500,
1000), and the experiment is randomly replicated R = 1000 times. Let θ̂ (r) =
(θ̂

(r)
j )� = (β̂

(r)
0 , β̂

(r)
1 , β̂

(r)
2 , γ̂ (r)�)� be the estimator obtained in the r th repli-

cation. We then consider the following measures to gauge their performances.
First, for a given parameter θj with 1 ≤ j ≤ p + 3, the root mean square er-

ror is evaluated by RMSEj = {R−1 ∑R
r=1(θ̂

(r)
j − θj )

2}1/2. Next, for each 1 ≤
j ≤ p + 3, a 95% confidence interval is constructed for θj as CI(r)j = (θ̂

(r)
j −
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z0.975ŜE
(r)
j , θ̂

(r)
j + z0.975ŜE

(r)
j ), where ŜE

(r)
j is root square of the j th diagonal el-

ement of (
∑

t X
�
t−1Xt−1)

−1σ̂ 2 with σ̂ 2 = (NT )−1 ∑
i,t (Yit − X�

it θ̂
(r))2, and zα is

the αth quantile of a standard normal distribution. Then the coverage probability
(CP) is computed as CPj = R−1 ∑R

r=1 I (θj ∈ CI(r)j ), where I (·) is the indicator
function. Lastly, the total number of observed edges (i.e.,

∑
i1,i2

ai1i2 ) and the net-
work density [i.e., {N(N − 1)}−1 ∑

i1,i2
ai1i2 ] are also reported.

The detailed simulation results are summarized in Tables 1–3. For the first ex-
ample (i.e., Table 1), we find that, if T is fixed, the RMSE values for all θ̂j ’s
decrease toward 0 as N increases. Consider for example β̂1 (i.e., the estimated
network effect) with T = 30, the RMSE value drops from 4.5% to 1.3%, as N

increases from 100 to 1000. In the meanwhile, the network density drops from
22.7% to 2.4%, which implies that the network structure is increasingly sparse.
Moreover, the reported coverage probability values for each parameter (i.e., θj )
are all fairly close to their nominal level 95%, which suggests that the estimated
standard error (i.e., ŜE) approximates the true SE very well. Quantitatively similar
findings are also obtained for Examples 2 and 3 from Tables 2 and 3. All these re-
sults confirm that the proposed estimator θ̂ is indeed consistent and asymptotically
normal.

4.3. Simulation for potential applications. Recall the two potential applica-
tions discussed in Section 3, which are the network structure analysis and the inter-
vention analysis. Both of them are demonstrated through the following simulation
studies. For each study, three different network structures are simulated (i.e., dyad
independence model, stochastic block model and power-law distribution model)
in the same manner as in the previous subsection. For illustration purposes, we fix
N = 100, T = 100, K = 5, α = 2.5, and (β0, β1, β2)

� = (0.2,0.1,0.4)�.

STUDY 1 (Network Structure Analysis). We first study the effect of network
structure change discussed in Section 3.1. The procedure is implemented as fol-
lows:

Step (1) (Initializing) Simulate an initial network structure A(0) as in the previous
simulation examples.

Step (2) (Alternating)
(2.1) (Network Structure) Once A(k−1) is given, we then update it to

A(k) (1 ≤ k ≤ N ) as follows. Define two different node sets, which
are �k0 = {j : akj = 1 and β0j < lk} and �k1 = {j : j �= k, akj =
0 and β0j > lk}, where lk = n−1

k

∑
j akjβ0j is the local impact re-

ceived by node k. If |�k0| ≥ 1 (i.e., the size of �k0), we then ran-
domly select one node from �k0 (denoted by j1), and change akj1

from 1 to 0. Similarly, if |�k1| ≥ 1, we then randomly select one
node from �k1 (denoted by j2), and change akj2 from 0 to 1. Do
nothing if |�k0| = 0 or |�k1| = 0.
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TABLE 1
Simulation results for Example 1 with 1000 replications. The RMSE values (×102) are reported for every β and γ estimates. The CP (in %) of every

estimate is given in parentheses. Total number of observed edges (TNOE) and network density (ND) are also reported

T = 10 T = 30 T = 100

N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000

β0 6.4 (93.8) 2.6 (94.4) 1.8 (93.9) 3.7 (93.5) 1.4 (94.7) 1.0 (94.9) 2.0 (94.7) 0.8 (94.8) 0.5 (95.5)
β1 7.6 (95.1) 3.3 (93.9) 2.2 (94.8) 4.5 (94.3) 1.9 (93.9) 1.3 (93.7) 2.5 (94.4) 1.0 (94.4) 0.7 (95.8)
β2 2.9 (94.3) 1.2 (95.0) 0.9 (95.0) 1.6 (93.4) 0.7 (94.5) 0.5 (94.8) 0.9 (94.1) 0.4 (94.9) 0.3 (93.9)

γ1 4.9 (94.5) 2.0 (94.6) 1.5 (94.1) 2.7 (94.7) 1.2 (95.7) 0.8 (95.9) 1.5 (95.2) 0.6 (96.8) 0.4 (95.8)
γ2 4.8 (94.0) 2.0 (94.2) 1.4 (94.2) 2.6 (94.7) 1.2 (95.2) 0.8 (94.7) 1.5 (93.9) 0.6 (94.3) 0.5 (94.4)
γ3 6.0 (96.5) 2.6 (96.5) 1.9 (94.9) 3.6 (94.3) 1.5 (94.4) 1.1 (95.4) 2.0 (93.5) 0.8 (94.9) 0.6 (94.9)
γ4 4.2 (95.2) 1.8 (95.1) 1.3 (95.0) 2.5 (95.4) 1.1 (94.2) 0.7 (94.9) 1.3 (95.6) 0.6 (95.1) 0.4 (94.3)
γ5 3.8 (95.6) 1.7 (94.2) 1.2 (95.2) 2.2 (94.2) 1.0 (94.8) 0.7 (95.3) 1.2 (95.3) 0.5 (94.7) 0.4 (95.1)

TNOE 2251 11,732 23,981 2251 11,732 23,981 2251 11,732 23,981
ND (%) 22.7 4.7 2.4 22.7 4.7 2.4 22.7 4.7 2.4
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TABLE 2
Simulation results for Example 2 with 1000 replications. The RMSE values (×102) are reported for every β and γ estimates. The CP (in %) of every

estimate is given in parentheses. Total number of observed edges (TNOE) and network density (ND) are also reported

K = 5 K = 10 K = 20

N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000

β0 1.8 (95.1) 0.9 (92.6) 0.6 (95.4) 1.9 (95.2) 0.8 (95.3) 0.6 (95.4) 1.9 (94.2) 0.8 (95.2) 0.6 (94.3)
β1 2.1 (95.9) 1.1 (95.1) 1.1 (95.4) 1.7 (95.4) 0.9 (95.4) 0.8 (94.1) 1.7 (95.3) 0.8 (94.7) 0.6 (95.7)
β2 1.8 (95.2) 0.8 (95.0) 0.6 (94.9) 1.8 (93.9) 0.8 (94.8) 0.5 (95.9) 1.8 (94.9) 0.8 (94.8) 0.6 (93.6)

γ1 2.3 (94.8) 1.0 (95.3) 0.7 (94.7) 2.4 (94.1) 1.0 (94.0) 0.7 (95.0) 2.3 (95.3) 1.0 (94.6) 0.7 (94.8)
γ2 2.5 (95.3) 1.0 (95.7) 0.8 (95.0) 2.6 (95.0) 1.1 (93.7) 0.8 (94.1) 2.5 (95.8) 1.1 (94.1) 0.8 (93.7)
γ3 2.8 (94.2) 1.2 (95.5) 0.8 (95.4) 2.7 (95.2) 1.2 (95.0) 0.8 (96.8) 2.7 (94.9) 1.2 (94.6) 0.8 (95.6)
γ4 2.4 (94.9) 1.0 (96.2) 0.7 (95.8) 2.4 (96.0) 1.1 (94.6) 0.7 (96.0) 2.5 (93.2) 1.1 (95.4) 0.7 (95.4)
γ5 2.2 (95.0) 1.0 (94.9) 0.7 (94.9) 2.2 (93.7) 1.0 (94.7) 0.7 (95.2) 2.2 (94.7) 1.0 (94.7) 0.7 (94.5)

TNOE 261 2339 7523 173 1239 3792 193 969 2777
ND (%) 2.6 0.9 0.8 1.7 0.5 0.4 1.9 0.4 0.3
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TABLE 3
Simulation results for Example 3 with 1000 replications. The RMSE values (×102) are reported for every β and γ estimates. The CP (in %) of every

estimate is given in parentheses. Total number of observed edges (TNOE) and network density (ND) are also reported

α = 1.2 α = 2.5 α = 5.0

N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000 N = 100 N = 500 N = 1000

β0 5.2 (95.2) 4.4 (94.5) 4.0 (94.7) 2.7 (95.8) 1.1 (95.3) 0.8 (94.4) 2.2 (95.0) 1.0 (94.5) 0.7 (95.0)
β1 8.7 (94.8) 8.4 (95.1) 7.8 (94.7) 2.5 (94.3) 0.9 (92.8) 0.6 (93.8) 1.2 (93.7) 0.5 (95.2) 0.3 (94.5)
β2 1.6 (94.6) 0.7 (94.9) 0.5 (95.4) 1.6 (95.4) 0.7 (96.5) 0.5 (95.6) 1.6 (94.1) 0.7 (95.3) 0.5 (94.3)

γ1 2.8 (95.5) 1.2 (95.4) 0.8 (95.4) 2.8 (95.0) 1.2 (94.2) 0.9 (94.7) 2.7 (94.9) 1.2 (95.1) 0.8 (94.5)
γ2 2.6 (94.7) 1.2 (95.2) 0.8 (94.7) 2.6 (95.1) 1.1 (96.2) 0.8 (94.1) 2.6 (95.0) 1.2 (95.1) 0.8 (95.1)
γ3 3.7 (94.0) 1.6 (94.6) 1.1 (94.4) 3.5 (94.7) 1.5 (95.9) 1.1 (94.7) 3.5 (95.0) 1.5 (95.5) 1.1 (94.3)
γ4 2.5 (94.3) 1.1 (94.5) 0.8 (93.9) 2.4 (95.8) 1.0 (95.4) 0.8 (94.4) 2.5 (93.5) 1.1 (95.1) 0.8 (94.7)
γ5 2.3 (93.9) 0.9 (96.9) 0.7 (95.8) 2.2 (94.5) 1.0 (95.3) 0.7 (94.2) 2.2 (95.3) 1.0 (94.2) 0.7 (94.1)

TNOE 3535 77,498 268,983 561 2227 4563 220 1060 2132
ND (%) 35.7 31.1 26.9 5.7 0.9 0.5 2.2 0.4 0.2
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FIG. 1. Potential applications for three different network structures: black (◦) for dyad indepen-
dence model, red (�) for stochastic block model and blue (+) for power-law distribution model. The
left panel: Network Structure Analysis; the right panel: Intervention Analysis.

(2.2) (Response Vector) With the updated network structure A(k), we
simulate a series of response vectors as in the previous simulation
examples and denote them by Y

(k)
t = (Y

(k)
it )� with 1 ≤ t ≤ T .

Note that in Step (2.1), we distinguish k’s followees by comparing their nodal
impacts (i.e., β0j ) with k’s local impact (i.e., lk). By doing so, a node with
nodal impact smaller than lk is unfollowed, and a node with nodal impact larger
than lk is followed. Next, the expected average network activeness (i.e., EANA)

can be estimated by ÊANA
(k) = (NT )−1 ∑

i,t Y
(k)
it . This leads to an EANA path

{ÊANA
(k) : 1 ≤ k ≤ N}. For a reliable evaluation, we replicate the experiment

1000 times. This generates a total of 1000 EANA paths, which are then averaged
and plotted in the left panel of Figure 1. A monotonically increasing pattern is
detected, which corroborates our theoretical analysis in Section 3.1 quite well.

STUDY 2 (Intervention Analysis). In this study, we investigate the intervention
effect discussed in Section 3.2. The network data are generated as in the previous
study. According to the discussion in Section 3.2, a node with larger weighted de-
gree is more likely to have larger influential power. To confirm this, we calculate
for each node its weighted degree as

∑
j n−1

i aji , and the corresponding influential
power νi , where ν = (νi)

� = (I − G�)−11. This leads to a scatter plot as given in
the right panel of Figure 1. A clear monotonic relationship is detected, which indi-
cates a strong positive correlation between weighted degree and influential power.
It is remarkable that, for a large-scale network, an accurate computation of ν is dif-
ficult, because an ultra-high dimensional matrix (i.e., I −G�) needs to be inverted.
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However, the computation of weighted degree is much easier. This study confirms
the practical usefulness of the weighted degree as a computationally feasible proxy
for influential power.

4.4. A Sina Weibo dataset. We next illustrate our proposed method by a real
example. The data are collected from Sina Weibo (www.weibo.com), which is the
largest Twitter-type social media in China. Our dataset contains weekly observa-
tions for a total of N = 2982 active followers of an official Weibo account. These
Weibo users are observed for a total of T = 4 consecutive weeks. The response
(i.e., Yit ) considered here is the log(1 + x)-transformed post length (i.e., the num-
ber of characters contained in the post) made by node i in week t . In addition,
two time-invariant nodal covariates are recorded. They are the number of personal
labels (created by the users to describe their life styles and career status) and the
gender of each node (male = 1, female = 0). Lastly, the network structure A is
naturally defined to be the followee–follower relationship. The resulting network
density is around 2.2%.

We first provide the histogram of the in-degrees and out-degrees in Figure 2. It
can be seen that the distribution of in-degrees is much more skewed than that of
out-degrees. Their median values are 20 and 48, respectively. Next, the histogram
of the responses is plotted in Figure 3. The response distribution is approximately
normal with the mean value 6.26. To better motivate our method, we conduct some
preliminary analysis. First, a simple linear regression is conducted for each node
with Yit as the response and Yi(t−1) as the only covariate. As a consequence, R-
squares can be computed for each node. This leads to a total of N = 2982 R-square

FIG. 2. The Sina Weibo data analysis. The left panel: histogram of in-degrees for N = 2982 nodes.
The highly right skewed shape indicates the existence of “super stars” in the network; the right panel:
similar histogram but for out-degrees.

http://www.weibo.com
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FIG. 3. The Sina Weibo data analysis. Histogram of the response, which is the log(1 + x)-
transformed Weibo length. The bell-shaped histogram suggests the response distribution is approxi-
mately normal.

values, whose median level is around 31.8%. This suggests the existence of the mo-
mentum impact. Next, we compute residuals from this model for each node. These
residuals are then treated as the responses and regressed against n−1

i

∑
j aijYj (t−1)

(i.e., the network impact). This leads to another N = 2982 R-squares values, whose
median is around 50.1%. This suggests that, even after controlling the momentum
impact, the network effect exists.

Motivated by the preliminary analysis, we then fit the proposed NAR model to
the Weibo dataset. The detailed estimation results are given in Table 4. As one
can see, all estimates are at 5% level of significance. The estimated network effect
(0.09) suggests that the activeness of a node is positively related to its connected
neighbors. The estimated momentum effect (0.78) confirms that a node with higher
(lower) activeness level in the past is likely to exhibit higher (lower) activeness in
the future. The estimated nodal effects indicate that male users with more self-

TABLE 4
The detailed NAR analysis results for the Sina Weibo dataset

Regression coefficient Estimate SE (×102) p-value

Baseline Effect (β̂0) 0.53 13.13 <0.001
Network Effect (β̂1) 0.09 1.81 <0.001
Momentum Effect (β̂2) 0.78 0.68 <0.001
Number of Labels (γ̂1) 0.02 0.31 <0.001
Gender (γ̂2) 0.10 2.42 <0.001
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FIG. 4. The Sina Weibo data analysis. The left panel: weighted degree versus influential power; the
right panel: histogram for weighted degree.

created labels tend to be more active. Next, in order to evaluate the out-sample
prediction performance, we use the data from the first three weeks for estimation,
and observations in the last week to evaluate its prediction accuracy. The resulting
mean absolute prediction error (MAPE) is 0.78. As an alternative solution, one can
also fit an AR(1) model to each individual node and then evaluate its prediction
accuracy in a similar manner. The resulting MAPE is 3.34, which is substantially
larger than that of the NAR model (i.e., 0.78). We do not consider a VAR model as
a competitor for this particular dataset. This is because, with T = 4 and N = 2982,
the total number of the parameters demanded by a VAR model is too huge to be
estimated.

Finally, we also calculate for each node its weighted degree and influential
power, which are summarized in Figure 4. Once again, a positive relationship is
observed; see the left panel in Figure 4. This further confirms that weighted de-
gree should be a practically useful proxy for influential power. Meanwhile, the
distribution of weighted degree is found to be heavily tailed; see the right panel in
Figure 4. Further calculation reveals that only 26% of these top nodes carry about
80% of the total weighted degree. This means that a small fraction of the top nodes
possesses the majority of the influential power in the whole network. Therefore,
they should be the focus of the network intervention and marketing.

5. Concluding remarks. To conclude the article, we discuss here several in-
teresting topics for future study. First, the NAR model proposed here requires
the response to be continuous. However, discrete responses are commonly en-
countered in real practice. Then how to extend the NAR model for noncontin-
uous responses is the first topic for future study. Second, the network structure
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discussed here is assumed to be static. However, in reality the network struc-
ture slowly changes with time. Then how to model such a network structure
dynamic is another interesting problem worthwhile pursuing. Third, the NAR
model assumes that, as long as aij1 �= 0 and aij2 �= 0, the coefficients for Yj1(t−1)

and Yj2(t−1) are the same. One may consider a more flexible model as Yit =
β0i + ∑N

j=1 aijηjYj (t−1) + β2Yi(t−1) + εit . Then how to estimate those ηj ’s is
a problem of great importance. Lastly, the NAR model is established for the whole
network. However, if the network is observed partially (e.g., sampled network),
the resulting estimate for network effect (i.e., β1) could be biased. Our finding cor-
roborates that of [6] and [34] very well. Then how to correct this bias should be a
challenging and interesting topic for future study.

APPENDIX

A.1. Proof of Theorem 2. Note that {Yt } defined as in (2.3) satisfies the NAR
model (2.2) for any N . To prove the existence of a stationary solution, it is suffi-
cient to show that {Yt } in (2.3) is strictly stationary according to Definition 1.

Define |M|e as |M|e = (|mij |) ∈ Rn×p for any arbitrary matrix M = (mij ) ∈
Rn×p . Moreover, for matrices M1 = (m

(1)
ij ) ∈ Rn×p and M2 = (m

(2)
ij ) ∈ Rn×p ,

define M1 � M2 as m
(1)
ij ≤ m

(2)
ij for 1 ≤ i ≤ n and 1 ≤ j ≤ p. Note that

E|B0 + Et−j |e � (|β0| + E|Z�
i γ | + E|εit |)1 and |G|je1 = (|β1|W + |β2|I )j 1 =

(|β1|+|β2|)j 1. As a result, E|w�
N

∑∞
j=0 Gj(B0 +Et−j )| ≤ ∑∞

i=1 |ωi |∑∞
j=0(|β1|+

|β2|)j < ∞, which implies that limN→∞ w�
NYt = limN→∞ w�

N

∑∞
j=0 Gj(B0 +

Et−j ) exists with probability one. Let Yω
t = limN→∞ w�

NYt , and it is obvious that
{Yω

t } is strictly stationary. Hence, {Yt } is strictly stationary according to Defini-
tion 1.

Next, we verify the uniqueness of the strictly stationary solution. Assume
that {Ỹt } is another strictly stationary solution to the NAR model with fi-
nite first order moment. Therefore, E|Ỹt |e � C11 for some constant C1. Then
we have E|w�

NYt − w�
N Ỹt | = E|∑∞

j=m w�
NGj(B0 + Et−j ) − w�

NGmỸt−m| ≤
C2

∑∞
j=m{(|β1| + |β2|)j + C1(|β1| + |β2|)m}∑∞

i=1 |ωi | for any N and weight ω,
where C2 = |β0| + E|Z�

i γ | + E|εit |. Consequently, by the arbitrary specification
of m, we have Yω

t = Ỹ ω
t with probability one. This completes the proof of Theo-

rem 2.

A.2. Proof of Theorem 3. By (2.9), θ̂ can be written as θ̂ = θ + 
̂−1
̂xe,
where 
̂ = (NT )−1 ∑T

t=1 X
�
t−1Xt−1 and 
̂xe = (NT )−1 ∑T

t=1 X
�
t−1Et . As a re-

sult, the conclusion of Theorem 3 holds if


̂ →
p


,(A.1)

√
NT 
̂xe →

d
N

(
0, σ 2


)
,(A.2)
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as min{N,T } → ∞. Actually, (A.1) only requires N → ∞ in the following proofs.
Subsequently, (A.1) will be proved in Step 1, and (A.2) will be proved in Step 2.

Step 1. Proof of (A.1). In this step, we attempt to prove that


̂ = 1

NT

T∑
t=1

X�
t−1Xt−1 =

⎛⎜⎜⎝
1 S12 S13 S14

S22 S23 S24
S33 S34

S44

⎞⎟⎟⎠→
p

⎛⎜⎜⎜⎝
1 cβ cβ 0


1 
2 κ8γ
�
z


3 κ3γ
�
z


z

⎞⎟⎟⎟⎠ ,

where

S12 = 1

NT

T∑
t=1

N∑
i=1

w�
i Yt−1, S13 = 1

NT

T∑
t=1

N∑
i=1

Yi(t−1), S14 = 1

N

N∑
i=1

Z�
i ,

S22 = 1

NT

T∑
t=1

N∑
i=1

(
w�

i Yt−1
)2

, S23 = 1

NT

T∑
t=1

N∑
i=1

w�
i Yt−1Yi(t−1),

S24 = 1

NT

T∑
t=1

N∑
i=1

w�
i Yt−1Z

�
i , S33 = 1

NT

T∑
t=1

N∑
i=1

Y 2
i(t−1),

S34 = (NT )−1 ∑T
t=1

∑N
i=1 Yi(t−1)Z

�
i , S44 = N−1 ∑N

i=1 ZiZ
�
i , and cβ = β0(1 −

β1 − β2)
−1, 
1 = c2

β + κ5γ
�
zγ + κ6, 
2 = c2

β + κ7γ
�
zγ + κ2, and 
3 =

c2
β + κ4γ

�
zγ + κ1 are defined in Theorem 3. Note that, by equation (2.2),

(A.3) Yt = cβ1 + (I − G)−1Zγ + Ỹt

almost surely, where Ỹt = ∑∞
j=0 GjEt−j , Zγ = (Z�

1 γ, . . . ,Z�
Nγ )�, and {Z�

i γ }
are i.i.d. random variables. By the law of large numbers, it is obvious that S44 →p


z and S14 →p 0 by (C1). We next show the convergence of the other entries in

̂ one by one.

Step 1.1. Convergence of S12. Note that

S12 = 1

NT

T∑
t=1

N∑
i=1

w�
i Yt−1 = 1

NT

T∑
t=1

1�WYt−1 = β0

1 − β1 − β2
+ S12a + S12b,

where S12a = N−11�W(I − G)−1Zγ and S12b = (NT )−1 ∑T
t=1 1�W Ỹt−1.

Then by (5.4) and (5.2) in Lemma 2, we have N−21�WQW�1 → 0 and
N−1 ∑∞

j=0{1�WGj(G�)jW�1}1/2 → 0, as N → ∞. As a result, it is implied
by Lemma 1(a) and (c) that S12a →p 0 and S12b →p 0.

Step 1.2. Convergence of S13. Note that

S13 = 1

NT

T∑
t=1

N∑
i=1

Yi(t−1) = 1

NT

T∑
t=1

1�Yt−1 = β0

1 − β1 − β2
+ S13a + S13b,
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where S13a = N−11�(I − G)−1Zγ and S13b = (NT )−1 ∑T
t=1 1�Ỹt−1. Similarly,

we have N−21�Q1 → 0 and N−1 ∑∞
j=0{1�Gj(G�)j 1}1/2 → 0, as N → ∞, by

(5.4) and (5.2) of Lemma 2. As a result, by Lemma 1(a) and (c), we have S13a →p

0, S13b →p 0, and S13 →p cβ .
Step 1.3. Convergence of S22. Note that

S22 = 1

NT

T∑
t=1

N∑
i=1

(
w�

i Yt−1
)2 = 1

NT

T∑
t=1

Y�
t−1W

�WYt−1

= β2
0

(1 − β1 − β2)2 + S22a + S22b + 2S22c + 2β0(S12a + S12b)

1 − β1 − β2
,

where S22a = N−1(Zγ )�(I − G�)−1W�W(I − G)−1Zγ , S22b = (NT )−1 ×∑T
t=1 Ỹ

�
t−1W

�W Ỹt−1 and S22c = (NT )−1 ∑T
t=1(Zγ )�(I − G�)−1W�W Ỹt−1.

By (5.5), (5.3) and (5.6), N−1 ∑∞
j=0[tr{WGj(G�)jW�WQW�}]1/2 → 0 and

N−1 ∑∞
i,j=0[tr{WGi(G�)iW�WGj(G�)jW�}]1/2 → 0. Furthermore, one can

verify that N−2 tr{(WQW�)2} → 0. Then by Lemma 1(b), (d) and (e), we have
S22a →p κ5γ

�
zγ , S22b →p κ6, S22c →p 0. Consequently, we have S22 →p

c2
β + κ5γ

�
zγ + κ6, where κ5 and κ6 are defined in Theorem 3.
Step 1.4. Convergence of S23. Note that

S23 = 1

NT

T∑
t=1

N∑
i=1

w�
i Yt−1Yi(t−1) = 1

NT

T∑
t=1

Y�
t−1WYt−1

= β2
0

(1 − β1 − β2)2 + S23a + S23b + 2S23c + 2β0(S12a + S12b)

1 − β1 − β2
,

where S23a = N−1(Zγ )�(I −G�)−1W(I −G)−1Zγ , S23b = NT −1 ∑T
t=1 Ỹ

�
t−1×

W Ỹt−1 and S23c = NT −1 ∑T
t=1(Zγ )�(I − G�)−1W Ỹt−1. Further, note that

WQW� = f1,1(W,Q), Q = f0,1(W,Q), Gj(G�)j = gj,0,1(G,W) and
WGj(G�)jW� = gj,1,1(G,W). Then by (5.5), (5.3) and (5.6) of Lemma 2,
N−2 tr{(WQW�)Q} → 0, N−1 ∑∞

i,j=0[tr{Gi(G�)iWGj(G�)jW�}]1/2 → 0,

and N−1[tr{WGj(G�)jW�Q}]1/2 → 0. Therefore, by Lemma 1(b), (d) and (e),
S23a →p κ7γ

�
zγ , S23b →p κ2, S23c →p 0 and S23 →p c2
β + κ7γ

�
zγ + κ2,
where κ7 and κ2 are defined in Theorem 3.

Step 1.5. Convergence of S33.

S33 = 1

NT

T∑
t=1

N∑
i=1

Y 2
i(t−1) = 1

NT

T∑
t=1

Y�
t−1Yt−1

= β2
0

(1 − β1 − β2)2 + S33a + S33b + 2S33c + 2β0(S13a + S13b)

1 − β1 − β2
,
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where S33a = N−1(Zγ )�(I −G�)−1(I −G)−1Zγ , S33b = (NT )−1 ∑T
t=1 Ỹ

�
t−1 ×

Ỹt−1, and S33c = (NT )−1 ∑T
t=1(Zγ )�(I − G�)−1Ỹt−1. By (5.5), (5.3) and

(5.6), we have N−2 tr(Q2) → 0, N−1 ∑∞
i,j=0[tr{Gi(G�)iGj (G�)j }]1/2 → 0, and

N−1 ∑∞
j=0[tr{Gj(G�)jQ}]1/2 → 0, as N → ∞. Hence, by Lemma 1(b), (d) and

(e), S33a →p κ4γ
�
zγ , S33b →p κ1, S33c →p 0 and S33 →p c2

β + κ4γ
�
zγ +

κ1, where κ4 and κ1 are defined in Theorem 3.
Step 1.6. Convergence of S24 and S34. Note that

S24 = 1

NT

T∑
t=1

N∑
i=1

w�
i Yt−1Z

�
i = 1

NT

T∑
t=1

Y�
t−1W

�Z = S24c + S24a + S24b,

S34 = 1

NT

T∑
t=1

N∑
i=1

Yi(t−1)Z
�
i = 1

NT

T∑
t=1

Y�
t−1Z= S24c + S34a + S34b,

where S24a = (NT )−1 ∑T
t=1 γ �Z�(I − G�)−1W�Z, S24b = (NT )−1 ×∑T

t=1 Ỹ
�
t−1W

�Z, S34a = (NT )−1 ∑T
t=1 γ �Z�(I − G�)−1Z, S34b = (NT )−1 ×∑T

t=1 Ỹ
�
t−1Z, and S24c = β0(1 − β1 − β2)

−1N−1 ∑N
i=1 Z�

i . By (5.5) and (5.3) of
Lemma 2, we have N−2 tr(WQW�) → 0, N−1 ∑∞

j=0[tr{WGj(G�)jW�}]1/2 →
0, N−2 tr(Q) → 0, and N−1 ∑∞

j=0[tr{Gj(G�)j }]1/2 → 0, as N → ∞. As a re-
sult, by the law of large numbers and Lemma 1(b) and (e), we have S24c →p 0,
S24a →p κ8γ

�
z, S24b →p 0, S34a →p κ3γ
�
z and S34b →p 0. Consequently,

we have S24 →p κ8γ
�
z and S34 →p κ3γ

�
z, where κ8 and κ3 are defined in
Theorem 3. This completes the proof of (A.1).

Step 2. Proof of (A.2). To prove (A.2), it suffices to show that (NT )1/2η� ×

̂xe = (NT )−1/2 ∑

t η
�X�

t−1Et →d N(0, η�
η) for any η ∈ Rp+3, where σ 2 is
set to be 1 in this step for simplicity. To this end, denote ξNt = (NTN)−1/2η� ×
X�

t−1Et , SNt = ∑t
s=1 ξNs and FNt = σ {εis,1 ≤ i ≤ N,−∞ < s ≤ t}, where the

number of observed time points TN is assumed to depend on N with TN → ∞ as
N → ∞. As a result, the double sequence {SNt ,FNt ,−∞ < t ≤ TN,N ≥ 1} is a
martingale array.

Similar to the proof of (A.1) in Step 1, we can show that N−2E(η�X�
t−1 ×

Xt−1η)2 < ∞, which implies that, for any δ > 0, as N → ∞,

TN∑
t=1

E
{
ξ2
NtI

(|ξNt | > δ
)|FN,t−1

} ≤ δ−2
TN∑
t=1

E
(
ξ4
Nt |FN,t−1

)
(A.4)

≤ Cδ−2

(NTN)2

TN∑
t=1

(
η�X�

t−1Xt−1η
)2 →

p
0,
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where C = 2σ 4 + |E(ε4
it ) − 3σ 4|. Moreover, by (A.1),

(A.5)
TN∑
t=1

E
(
ξ2
Nt |FN,t−1

) = 1

NTN

TN∑
t=1

η�X�
t−1Xt−1η→

p
η�
η

as N → ∞. Therefore, by (A.4), (A.5) and the central limit theorem for
martingale difference sequences [14], Corollary 3.1, we have that SNTN

=
(NT )1/2η�
̂xe →d N(0, η�
η). This completes the proof.

SUPPLEMENTARY MATERIAL

Supplement to “Network vector autoregression” (DOI: 10.1214/16-
AOS1476SUPP; .pdf). The supplementary material [35] contains the verification
of (2.6) and (2.7), proofs of Theorem 1, Theorem 4, Theorem 5, two useful lem-
mas and Proposition 2. The numerical verification of conditions (C2)–(C3) are
also included.
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