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Sparse Regularization in Fuzzy c-Means for
High-Dimensional Data Clustering

Xiangyu Chang, Qingnan Wang, Yuewen Liu, and Yu Wang

Abstract—In high-dimensional data clustering practices, the
cluster structure is commonly assumed to be confined to a lim-
ited number of relevant features, rather than the entire feature
set. However, for high-dimensional data, identifying the relevant
features and discovering the cluster structure are still chal-
lenging problems. To solve these problems, this paper proposes
a novel fuzzy c-means (FCM) model with sparse regulariza-
tion (�q(0 < q ≤ 1)-norm regularization), by reformulating the
FCM objective function into the weighted between-cluster sum
of square form and imposing the sparse regularization on the
weights. An algorithm is also developed to explicitly solve the
proposed model. Compared with the existing clustering models,
the proposed model can shrink the weights of irrelevant features
(noisy features) to exact zero, and also can be efficiently solved
in analytic forms when q = 1, 1/2. Experiments on both syn-
thetic and real-world data sets show that the proposed approach
outperforms the existing clustering approaches.

Index Terms—�q(0 < q ≤ 1)-norm regularization, fuzzy
c-means (FCM), high-dimensional data clustering.

I. INTRODUCTION

H IGH-DIMENSIONAL data clustering problems, i.e., the
objects to be clustered have a large number of features,

are still challenging problems in recent years [1]–[4]. In most
of the real-world cases, only a small portion of the features
is assumed to be relevant to the cluster structure [1], [2], [4].
For example, only a tiny portion of genes (relevant features)
are responsible for a certain biological activity, while the oth-
ers are irrelevant (noisy features). A good clustering approach
should be able to identify the relevant features and avoid the
negative influences of the noisy features [1], [2]. Intuitively,
if we can assign positive weights to the relevant features and
assign exact zero weights to the noisy features, the negative
influences of the noisy features could be avoided.
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Fuzzy c-means (FCM), as one of the classical fuzzy
type clustering approaches, has been well studied and
extended in [5]–[14]. Based on FCM, several approaches are
developed to address the high-dimensional clustering prob-
lems [2], [8]–[10], [13], [15]. One stream of the approaches
is to reduce the data dimensions before clustering the objects.
The dimension reduction methods, include principle compo-
nents analysis [16] and non-negative matrix factorization [17].
However, evidences show that the principal components
do not provide reasonable representatives of the original
dimensions [16]. Another stream of approaches, named as
attribute-weighting approaches, is to weight the attributes
differently. These approaches equip a weight vector into
the FCM objective function to indicate the relevance of
features [8]–[10], [15]. However, none of these attribute-
weighting approaches can shrink the weights of noisy features
to exact zero, thus a considerable proportion of noisy features
may be remained and negatively affect the clustering results.
These drawbacks significantly obstruct the application of the
FCMs on high-dimensional data clustering problems.

Therefore, a natural research question arises: can the FCM
be extended to shrink the weights of noisy features to exact
zero? Such an extension may dramatically reduce the nega-
tive influences of noisy features and improve the clustering
performance in solving the high-dimensional data clustering
problems. Unfortunately, this research question has not been
answered yet.

To address this research question, we try to impose sparse
regularizations on FCM. We first justify that FCM can be
reformulated into Witten and Tibshirani’s [1] sparse clus-
tering framework. Witten and Tibshirani’s [1] sparse cluster-
ing framework offered a specific attribute-weighting method,
which optimizes a weighted cost objective function using the
�1-norm regularization technique, thus is able to assign exact
zero weights to noisy features [1]. Based on the justification,
we propose a sparse FCM which maximizes the weighted
between-cluster sum of squares (BCSS) with �1-norm regu-
larization. Furthermore, inspired by the broad literature which
shows the outperformance of the nonconvex �q(0 < q < 1)-
norm in data mining problems [18]–[23], we extend the
proposed model to a sparse FCM with �q(0 < q ≤ 1)-norm
regularization, in the purpose of utilizing the outperformance
of �q(0 < q < 1)-norm.

The major contributions of this paper are summarized as
follows.

1) The proposed novel sparse FCM model imposes the
sparse regularization (�0<q≤1-norm regularization) to
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TABLE I
NOTATIONS USED IN THIS PAPER

assign exact zero weights to the noisy features for clus-
tering high-dimensional data. The proposed model is
motivated by the sparse clustering framework [1], but
extends the framework.

2) An algorithm is subtly designed to solve the nonsmooth
and nonconvex optimization problem of the proposed
model. When q = 1, 1/2, the proposed algorithm has
closed form solutions in all the steps. These closed form
solutions make the proposed approach more tractable
and efficient in dealing with high-dimensional data sets.

3) The outperformance of the proposed approach compar-
ing to some related clustering approaches is demon-
strated by expensive experiments on both synthetic and
real-world data sets.

The remainder of this paper is organized as follows.
Section II introduces the proposed FCM with sparse regu-
larization, and investigates an efficient algorithm for pursuing
the solution. Section III discusses the related work in the lit-
erature. Section IV illustrates and compares the finite sample
performance of the proposed FCM with the related cluster-
ing approaches using both synthetic and real-world data sets.
Section V concludes this paper with discussions. All the the-
oretical proofs are relegated to Appendix. For clarity, the
notations used in this paper are defined in Table I.

II. SPARSE REGULARIZATION IN FUZZY C-MEANS

A. Notations

Let X = (xij) ∈ R
n×p denote a data set in the matrix form

with n objects and p features. We assume that xi ∈ R
p and

Xj ∈ R
n are the ith row and jth column of X, respectively,

then X = [X1, X2, . . . , Xp] = [x�
1 , x�

2 , . . . , x�
n ]�. It is well

known that the standard FCM clusters the data into K groups
G = {G1, G2, . . . , GK} by minimizing the sum of distances
between the objects and the corresponding cluster centers C =
(C�

1 , C�
2 , . . . , C�

K )� = (ckj) ∈ R
K×p, where Ck, k = 1, . . . , K

is the kth cluster center. Then FCM can be formulated as the
following optimization problem:

min
G,C

K∑

k=1

n∑

i=1

uα
ikd(xi, Ck)

s.t.
K∑

k=1

uik = 1, 0 ≤ uik ≤ 1

i = 1, . . . , n, k = 1, . . . , K (1)

where U = (uik)
� ∈ R

n×K , uik denotes the degree of mem-
bership of the ith object belonging to the kth fuzzy cluster,
d : R

p × R
p → R is a dissimilarity measure satisfying

d(a, a) = 0, d(a, b) ≥ 0 and d(a, b) = d(b, a) and α ≥ 1
denotes the weighting exponent that controls the extent of
membership sharing between fuzzy clusters. As for the dis-
similarity between vector xi and xj, it is a common practice
to use the square of Euclidean distance (also called �2-norm),
namely, d(xi, xj) = ‖xi − xj‖2

2 = ∑p
l=1(xil − xjl)

2.
A high-dimensional data clustering problem commonly

assumes that the data to be clustered have a large number
of noisy features, and the cluster structure is confined to a
limited number of relevant features rather than the entire fea-
ture set [1], [3], [15]. The standard FCM cannot deal with
such high-dimensional data, because it cannot select rele-
vant features and identify the cluster structure simultaneously.
To overcome this hurdle, we propose a novel sparse FCM
approach in the next section.

B. Sparse Fuzzy c-Means

Witten and Tibshirani [1] verified that the classical k-means
and hierarchical clustering models can be reformulated using
the following framework:

max
�(G)

p∑

j=1

fj
(
Xj,�(G)

)
(2)

where fj(Xj,�(G)) is a function related only to the jth feature
of the data, and �(G) is the model parameter. They further
defined a sparse clustering framework

max
w,�(G)

p∑

j=1

wjfj
(
Xj,�(G)

)

s.t. ‖w‖2 ≤ 1, ‖w‖1 ≤ s, wj ≥ 0 (3)

where s is a tunning parameter and ‖w‖1 = ∑p
j=1 |wj| is

the �1-norm of w. Here, wj can be interpreted as the con-
tribution of the jth feature to the objective function (3).
The �1-norm has been proved to be able to generate a
sparse solution in many applications, where the tuning param-
eter s controls the number of relevant features in the
clustering results [1], [24]. Next, we provide Lemma 1
which justifies that the FCM is also a special case of the
framework (2).

Lemma 1: Suppose X is the data matrix, then

K∑

k=1

n∑

i=1

uα
ik‖xi − Ck‖2 =

K∑

k=1

1

2nk

n∑

i=1

n∑

i′=1

uα
ikuα

i′k‖xi − xi′ ‖2

where nk = ∑n
i=1 uα

ik, and Ck is selected as a weighted
empirical mean, which is

Ck =
∑n

i=1 uα
ikxi

nk
. (4)
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Proof: We know that

K∑

k=1

1

2nk

n∑

i=1

n∑

i′=1

uα
ikuα

i′k‖xi − xi′ ‖2

=
K∑

k=1

1

2nk

n∑

i=1

n∑

i′=1

uα
ikuα

i′k‖xi − Ck + Ck − xi′ ‖2

=
K∑

k=1

1

2nk

n∑

i=1

n∑

i′=1

uα
ikuα

i′k

{
‖xi − Ck‖2

+ ‖xi′ − Ck‖2 + 2(xi − Ck)
�(xi − Ck)

}
.

Since nk = ∑n
i′=1 uα

i′k, we have

n∑

i=1

n∑

i′=1

uα
ikuα

i′k‖xi − Ck‖2 =
n∑

i′=1

uα
i′k

n∑

i=1

uα
ik‖xi − Ck‖2

= nk

n∑

i=1

uα
ik‖xi − Ck‖2

and
n∑

i=1

n∑

i′=1

uα
ikuα

i′k(xi − Ck)
�(xi − Ck)

=
[

n∑

i=1

uα
ik(xi − Ck)

][
n∑

i′=1

uα
i′k(xi′ − Ck)

]
= 0.

Then

K∑

k=1

1

2nk

n∑

i=1

n∑

i′=1

uα
ikuα

i′k‖xi − xi′ ‖2 =
K∑

k=1

n∑

i=1

uα
ik‖xi − Ck‖2.

Intuitively, the left hand side of Lemma 1 is the objective
function (1) of FCM, while the right hand side of Lemma 1
evaluates the dissimilarity within cluster, which is referred as
within-cluster sum of square of FCM. In fact, an operational
definition of clustering can be stated as follows: given a repre-
sentation of n objects, finding K groups based on a measure of
dissimilarity such that objects within the same group are alike
but objects in different groups are disparate [25]. Therefore,
we can also model the BCSS of FCM (1) as

BCSS(G)j = 1

n

n∑

i=1

n∑

i′=1

(
xij − xi′j

)2

−
K∑

k=1

1

nk

n∑

i=1

n∑

i′=1

uα
ikuα

i′k
(
xij − xi′j

)2 (5)

where BCSS(G) = (BCSS(G)1, . . . , BCSS(G)p)
�. Then, we

are able to rewrite FCM as

max
G,C

p∑

j=1

BCSS(G)j

s.t.
K∑

k=1

uik = 1, 0 ≤ uik ≤ 1

i = 1, . . . , n, k = 1, . . . , K. (6)

Note that BCSS(G)j, j = 1, . . . , p is a function which is
only related to the jth feature. In other words, FCM satisfies
the framework (2). According to Witten and Tibshirani’s [1]
sparse clustering framework, the FCM can be generalized to
the following model:

max
G,C,w

F(U, C, w) = w�BCSS(G)

s.t.
K∑

k=1

uik = 1, 0 ≤ uik ≤ 1

‖w‖2 ≤ 1, ‖w‖q
q ≤ s

wj ≥ 0, j = 1, . . . , p (7)

where 0 < q ≤ 1 and ‖w‖q
q = ∑p

j=1 |wj|q. We call (7) as
the sparse FCM model. Note that Witten and Tibshirani’s [1]
sparse clustering framework only considers the case q = 1.
However, there are also some evidences showing the outper-
formance of the nonconvex �q(0 < q < 1)-norm regularization
in SVM [18], compressive sensing [19], SAR imaging recov-
ery [20], robust regression [21], matrix completion [22], and
penalized clustering [23]. In order to utilize the outperfor-
mance of the �q(0 < q < 1)-norm regularization, we
generalize the standard �1-norm regularization to the �q(0 <

q ≤ 1)-norm regularization. Nevertheless, this generalization
leads to a nonsmooth and nonconvex optimization problem
(e.g., 0 < q < 1). The following section focuses on solving
the optimization problem.

C. Algorithm

For the simplicity, denote aj = BCSS(G)j, a =
(a1, . . . , ap)

� and the objective function of (7) as
F(U, C, w) = ∑p

j=1 wjaj. We apply the alternative iteration
technique to construct an algorithm to solve the model (7).
We first fix C and w and maximize F(U) with respect to U,
and then we fix w and U and maximize F(C) with respect
to C. Finally, we fix U and C and maximize F(w) with
respect to w. To this end, the following Theorems 1 and 2
show the detailed calculations.

Theorem 1: Let the cluster centers C and the attribute
weights w be fixed, F(U) is minimized if

uik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

Pk
if Dik = 0 and Pk = Card{ j : Dik = 0}
0

if Dik 
= 0 but Dit = 0 for some t, t 
= k
1

∑K
t=1

(
Dik

Dtk

)( 1
α−1

) otherwise

(8)

where Dik = ∑K
k=1 wj(xij−ckj)

2 and Card(A) is the cardinality
of set A.

Theorem 2: Let w and U be fixed, and F(C) is minimized if

ckj =

⎧
⎪⎨

⎪⎩

0 if wj = 0∑n
i=1 uα

ikxij∑n
i=1 uα

ik
if wj 
= 0

(9)

where k = 1, . . . , K, j = 1, . . . , p.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 1 FCM With �q(0 < q ≤ 1)-Norm Regularization

Input:
The number of clusters K and data matrix X ∈ R

n×p.
Output:

Clusters C1, C2, . . . , CK and wold.
1: Initialize w as wold

1 = wold
2 = · · · = wold

p = 1√
p ;

2: Update the partition matrix U by (8);
3: Update the cluster centers C by (9);
4: Fix C1, C2, . . . , CK and U and calculate aj. Solve the

optimization problem

max
w

p∑

j=1

wjaj. (10)

s.t. ‖w‖2
2 ≤ 1, ‖w‖q

q ≤ s

to get wnew;
5: Repeat the steps 2, 3 and 4 until the stopping criterion is

satisfied ∑p
j=1|wnew

j − wold
j |

∑p
j=1|wold

j | < 10−4.

Theorems 1 and 2 indicate the optimal solutions of degree
memberships U and cluster centers C, respectively. According
to Theorems 1 and 2, a detailed algorithm for solving (7) is
illustrated below.

A critical point of Algorithm 1 is to solve the problem (10).
It is obvious that the problem (10) is a nonsmooth and non-
convex optimization problem for 0 < q < 1, thus is difficult
to be solved. To this end, we need to justify the following
Theorems 3 and 4.

Without loss of generality, we assume that the sequence
{aj}p

j=1 in step 4 of Algorithm 1 is ordered decreasingly, i.e.,
ai ≥ aj for any i < j. Then we have the following.

Theorem 3: If (‖a‖q
q/‖a‖q

2) ≥ s ≥ 1 and 0 < q ≤ 1, the
optimal solution w∗ of problem (10) satisfies ‖w∗‖q

q = s and
‖w∗‖2

2 = 1.

Proof: Let aj = (1/n)
∑n

i=1
∑n

i′=1
(xij − xi′ j)

2 −∑K
k=1(1/nk)

∑n
i=1

∑n
i′=1

uα
ikuα

i′ k(xij − xi′ j)
2 and λ∗

j = w∗q
j .

Then, we need to justify λ∗ = (λ∗
1, λ

∗
2, . . . , λ

∗
p)

ᵀ is the optimal
solution of

max
λ

p∑

j=1

λ
1/q
j aj

s.t.
p∑

j=1

λ
2/q
j ≤ 1,

p∑

j=1

λj ≤ s

and satisfies
∑p

j=1 λ
∗2/q
j = 1 and

∑p
j=1 λ∗

j = s.

If
∑p

j=1 λ
∗2/q
j < 1, there exists a small δ > 0, such that

‖λ̄‖1 = ‖λ∗‖1 ≤ s where λ̄ = (λ̄1, λ̄2, . . . , λ̄p)
ᵀ, λ̄1 = λ∗

1 +
δ, λ̄2 = λ∗

2 − δ, λ̄j = λ∗
j , j = 3, . . . , p and

∑p
j=1 λ̄j < 1. Since

λ∗
1 ≥ λ∗

2 and f (x) = x1/q is convex and increasing, we can
get

∑p
j=1 ajuα

ikλ̄
1/q
j >

∑p
j=1 ajuα

ikλ
∗1/q
j , which comes to the

contradiction. So the optimal condition is
∑p

j=1 λ
∗2/q
j = 1.

If
∑p

j=1 λ
∗2/q
j = 1 and

∑p
j=1 λ∗

j < s, λ1/q must be the
optimal solution of

max
w

wᵀa

s.t. ‖w‖2
2 = 1, wj ≥ 0.

The solution of (10) is w∗
j = −(aj/‖a‖2). Then we get

∥∥w∗∥∥q
q = ‖a‖q

q

‖a‖q
2

≥ s (11)

which means ‖λ∗‖1 ≥ s. This also makes a contradiction. So
the optimal condition satisfies

∑p
j=1 λ∗

j = 1.
Theorem 3 proves that the optimal solution of (10) satis-

fies the boundary constraints. Based on Theorem 3, we can
prove that the optimal w∗ is the real roots of an algebraic
equation (12) for 0 < q < 1, as shown in the following
Theorem 4.

Theorem 4: Under the same condition of Theorem 3, there
exists a constant � satisfies 0 ≤ � ≤ 2

∑p
l=1 a2−q

l such that
the optimal solution of (10) with 0 < q < 1 has the following
form:

w∗
j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F1j(ϕ(�))/r1/p

if 0 ≤ � < 2
∑p

l=j+1 a2−q
l + a2−q

j

F2j(ϕ(�))/r1/p

if 2
∑p

l=j+1 a2−q
l + a2−q

j ≤ � < 2
∑p+1

l=j a2−q
l

0 if � ≥ 2
∑p+1

l=j a2−q
l

where j = 1, . . . , p, r is the scaling factor to ensure
‖w∗‖2 = 1, and Fγ j(φ) is the γ th largest real root of equation

ajx
1−q
j − 2x2−q

j −
(

1 − q

2(2 − q)

)1−q 1

2 − q
φ = 0 (12)

where γ = 1, 2 and

φ(�) =
{

� − T if T ≤ � ≤ T + a2−q
j

T − � if T + a2−q
j ≤ � ≤ T

(13)

where T = 2
∑p+1

h=j+1 a2−q
h and h = p, p − 1, . . . , 1.

Intuitively, Theorem 3 shows that an appropriate � should
satisfy ‖w∗‖q

q = s, while Theorem 4 reveals that there will be
several �s which satisfy the constraint. In Algorithm 1, we
determine to choose the � with the largest objective function
value. The numerical methods, such as Dichotomy searching,
can be employed to find the proper � because ‖w∗‖q

q is a
continuous function of �.

Using numerical methods to solve the problem (10) is asso-
ciated with a high computational complexity. To avoid the
computational complexity, we further justify that the optimal
solution of problem (10) has a closed form for q = 1, 1/2,
respectively. Based on Theorems 3 and 4, we have the
following.

Corollary 1: Under the same condition of Theorem 3, there
exists a constant � > 0 such that the solution of (10) for q = 1
is w∗ = (S(a,�)/‖S(a,�)‖2), where a = (a1, . . . , ap)

� and
S(a,�) = max(a − �, 0).
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Corollary 2: When q = 1/2, there exists a constant � ≥ 0
such that the optimal solution of (10) has the same form as in
Theorem 4, where Fγ i is defined as follows:

Fγ i(φ) = 2

3
ai cos2

(
π

3
+ (−1)γ

1

3
arcos

φ

a3/2
i

)
(14)

where γ = 1, 2.
Corollaries 1 and 2 give the closed form solutions of (10)

for q = 1, 1/2, respectively, thus can dramatically reduce
the computational complexity of Algorithm 1. In deed,
Corollaries 1 and 2 also indicate that the solutions of (10)
are the popular normalized soft [26] and normalized half [19]
thresholding functions in sparse modeling. Here, we name the
FCM with �1-norm regularization as �1-c-means and FCM
with �1/2-norm regularization as �1/2-c-means.

Another problem in Algorithm 1 is to choose the tuning
parameter s and fuzzification parameter α. For the tuning
parameter s, we know that

p(1/2−1/q)‖w‖q ≤ ‖w‖2 ≤ ‖w‖q, ∀w ∈ R
p, 0 < q ≤ 1.

From the inequality, we can infer that a meaningful s should
be in [1, p(1/q−1/2)]. If s > p(1/q−1/2), the �q(0 < q ≤ 1)-
norm regularization term will be inactive, the constraints of
problem (10) become ‖w‖2 ≤ 1, wj ≥ 0, and its opti-
mal solution is w∗ = (a/‖a‖2), which is not sparse at
all. Similarly, if 0 < s < 1, the �2-norm regularization
should be inactive, and constraints of problem (10) becomes
‖w‖q

q ≤ s, wj ≥ 0. The optimal solution of w is trivial with
only one nonzero element. In conclusion, the tuning parame-
ter s should be selected in [1, p(1/q−1/2)]. For the fuzzification
parameter α, its selection is still an open question even for
FCM. According to [8], α is commonly selected from a fixed
set such as α ∈ {1.1, 1.2, . . . , 3}. Following a procedure simi-
lar to [1], we apply a permutation technique and calculate the
gap statistic [27] to select s and α simultaneously.

We should mention that although the generated iterative
series in Algorithm 1 is not guaranteed to converge to the
global optimum, the objective function will increase mono-
tonically and achieve the local maximal value. Following the
same assumption in [28], suppose the partition matrix U is a
binary matrix, then the data matrix X can only have a finite
number of possible partitions. Moreover, since we know the
optimal weights w∗ for each fixed partition is unique based on
the subsequent analysis, it shows that the feasible set of the
optimization is finite. Therefore, the algorithm will terminate
after finite iterations and reach a local maximum.

Furthermore, the updating of U and C in Algorithm 1 can
be interpreted as applying FCM on a weighted data matrix,
thus the computational complexity of the steps 2 and 3 is the
same as the standard FCM with O(npK2) [14]. To update w
in step 4, we have to solve (10) by the Dichotomy search-
ing scheme numerically. The main computational complexity
of solving (10) is O(p log 1/ε) where ε is the required error
for searching. Therefore, the computational complexity of the
proposed sparse FCM is O(npK2) + O(p log 1/ε).

In summary, the implementation of Algorithm 1 is as fol-
lows: update the partition matrix U by Theorem 1; update the

cluster centers C by Theorem 2; update w by Corollaries 1
and 2 for q = 1, 1/2, respectively; and choose the tun-
ing parameter s and fuzzification parameter α using the gap
statistic.

III. RELATED WORK

This paper is naturally related to the high-dimensional data
clustering literature. High-dimensional data clustering prob-
lems have been initially studied using the strategy of reducing
dimensions before clustering [16], [17]. However, some evi-
dences show that the reduced dimensions do not provide
a reasonable representative of the original dimensions [16].
To identify the most relevant dimensions, attributed-
weighting approaches have been proposed [8]–[10], [29]–[32].
According to an up-to-date comprehensive review [2], the
attributed-weighting approaches are also the major branch of
the soft subspace clustering approaches.

Among the attributed-weighting approaches, one type of
approaches is the attribute-weighting FCM (AWFCM) [8].
Assume wj is the weight of jth feature, then AWFCM is

min
G,C,w

K∑

k=1

n∑

i=1

uα
ikwβ

j

p∑

j=1

(
xij − ckj

)2

s.t.
K∑

k=1

uik = 1, 0 ≤ uik ≤ 1

i = 1, . . . , n, k = 1, . . . , K
p∑

j=1

wj = 1, 0 ≤ wj ≤ 1, j = 1, . . . , p. (15)

In this model, the weights indicate the relevance of differ-
ent features in a cluster. When α = β = 1, the AWFCM
degenerates to the feature weight self-adjustment model [32];
when α = 1 and β > 1, AWFCM becomes the W-k-means
model [30]. In the classification framework of soft subspace
clustering approaches [2], the above AWFCM-type models are
also called the conventional soft subspace clustering models.

A second type of approaches is the FCM with weight
entropy regularization (WEFCM). Inspired by the cluster-
ing objects on subsets of attributes (COSA) method [29],
Zhou and Chen [15] proposed the WEFCM as follows:

min
G,C,w

K∑

k=1

n∑

i=1

uα
ik

p∑

j=1

wjk
(
xij − ckj

)2

+ λ

p∑

j=1

K∑

k=1

wjk log wjk (16)

s.t.
K∑

k=1

uik = 1, 0 ≤ uik ≤ 1

i = 1, . . . , n, k = 1, . . . , K
p∑

j=1

wjk = 1, 0 < wjk ≤ 1 (17)

where λ > 0 is a tuning parameter. Imposing the
entropy regularization can improve the interpretability
of weights [29], [34]. Specially, when α = 1, the
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WEFCM reduces to the entropy weighting k-means (EWKM)
model [31]. Since the weights of COSA, WEFCM, and
EWKM are different for different clusters, they are classified
as the independent soft subspace clustering in [2].

It is easy to prove that the attribute weights of the afore-
mentioned approaches cannot be shrunk to exact zero: the
weights in WEFCM (16) cannot be zero due to the logarithm
function; Keller and Klawonn [8] showed that the solution
of AWFCM (15) is not exact sparse, i.e., no attribute weight
will be zero (also see empirical evidences in Section IV). In
other words, for AWFCM and WEFCM, there are still a large
portion of noisy features remained to negatively influence the
clustering results. Comparing to AWFCM and WEFCM, the
proposed sparse FCM (7) can shrink the weights of noisy fea-
tures to exact zero (see Corollaries 1 and 2). Since AWFCM
and WEFCM are representatives of related fuzzy subspace
clustering models, the following experimental study will com-
pare these approaches with our proposed approaches (i.e., the
�1- and �1/2-c-means).

This paper is also related to Witten and Tibshirani’s [1]
sparse clustering framework. Witten and Tibshirani [1]
proposed a framework of sparse clustering, inspired
by the resulting sparse solution of �1-norm regulariza-
tion [1], [19], [24]. Their framework optimizes a weighted
cost objective function using the �1-norm regularization tech-
nique, thus is able to assign exact zero weights to noisy
features [1]. Witten and Tibshirani [1] justified that sev-
eral traditional hard clustering models, such as k-means
and hierarchical clustering, can be reformulated using their
framework. Based on their justification, they developed the
sparse k-means and hierarchical clustering to solve the high-
dimensional data clustering problems [1]. When the sparse
k-means and hierarchical clustering approaches are both hard
clustering approaches, the proposed approach in this paper
adapts the sparse clustering framework [1] to the FCM
model. From this perspective, the proposed approach extends
Witten and Tibshirani’s work [1]. The following experimental
study will also compare the sparse k-means (i.e., �1-k-means)
with our proposed approaches.

IV. EXPERIMENTAL STUDY

In this section, we evaluate and compare the finite sam-
ple performance of �1- and �1/2-c-means with FCM [34],
WEFCM [15], AWFCM [8], k-means [35], and �1-k-
means [1]. We consider several criteria to obtain compre-
hensive comparisons. The first criterion is the classifica-
tion error rate (CER) [1], which is defined as CER �∑

i>i′ |1Ĝ(i,i′) − 1G(i,i′)|/
(n

2

)
, where 1G(i,j) is an indicator func-

tion to record whether the ith and jth objects are in the
same group with respect to partition G. The second cri-
terion is the Davies Bouldin (DB) index [36], which is
defined as DB = (1/K)

∑K
k=1 maxs,s
=k(Sk + Ss)/dks, where

dks is the distance between the centroid of group Gk and
Gs, and Sk =

√
(1/n)

∑
i∈Gk

∑m
j=1|xij − zkj|2 is a disper-

sion measure of group Gk. The third criterion is the Dunn
index [37], which is the ratio of the smallest distance between

objects who are not in the same cluster to the largest intr-
acluster distance. The Dunn index is defined as DI =
(min1≤k≤l≤K δ(Gk, Gl)/max1≤m≤K �m), where δ(Gk, Gl) is
the intercluster distance between clusters Gk and Gl, and �m

calculates the maximum distance or the mean distance between
all items within cluster Gm. The fourth criterion is the num-
ber of nonzero weights NW = Card{i : ŵi 
= 0}, where ŵ is
the estimation of ground truth w produced by some computa-
tional algorithm. It counts the number of features selected as
relevant features. The fifth criterion is the number of proper
zero weights PZW = Card{i : wi = 0, ŵi = 0}, which records
the number of noisy features correctly eliminated. The sixth
criterion is the number of proper nonzero weights PNW =
Card{i : wi 
= 0, ŵi 
= 0}, which measures the number of rele-
vant features correctly selected. Note that PZW and PNW are
only available when the true relevant features are known, i.e.,
not available in the real-world data experiments.

A. Evaluation on Synthetic Data

In this part, we design three groups of experiments. The
first group is to verify whether the gap statistic is competent
to selecting an appropriate tuning parameter s for �1- and �1/2-
c-means. The second group is to compare the performance of
�1- and �1/2-c-means with the related clustering approaches in
the literature. The third one is to compare the approaches using
data sets with a large number of groups. In the experiments, for
FCM, AWFCM, and WEFCM, parameter α is selected from
the fixed set α ∈ {1.1, 1.2, . . . , 3} [8] following the procedure
similar to [1], while parameter β is set to be 2 according to
Keller and Klawonn’s suggestion [8].

1) Simulation 1: We evaluate the performance of tuning
parameter selection of �1- and �1/2-c-means via the gap statis-
tic [1], [27]. Assume the data matrix X ∈ R

n×p has three
clusters and each contains n = 200 objects and p = 2000
features. The first 50 features of X are relevant features while
the others are noisy features. Assume xij ∼ N(μij, 1) in X are
independent and

μij =

⎧
⎪⎨

⎪⎩

μ if i ∈ C1, j ≤ 50

0 if i ∈ C2, j ≤ 50

−μ if i ∈ C3, j ≤ 50.

(18)

For j > 50, all noisy features follow the standard normal dis-
tribution N(0, 1). According to the setup, the relevant features
have different mean values for different clusters, while the
noisy features have the same distribution across all the clus-
ters. We set μ = 0.2, and repeat the simulation 100 times.
Values of the tunning parameter s are selected to maximize
the gap statistic.

Fig. 1 summarizes the results of �1- and �1/2-c-means
compared with the FCM separately. From the left subfig-
ures, we can see that the highest gap statistic is achieved
when the number of nonzero weights is around 50. It shows
that the gap statistic is useful in selecting proper tuning
parameter for �1- and �1/2-c-means. The gap statistic of �1/2-
c-means is more sensitive to the selecting method comparing
to that of �1-c-means, because the curve of gap statistic of
�1/2-c-means decreases dramatically when the highest gap
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Fig. 1. �1-, �1/2-c-means and FCM are applied to a simulated 3-class exam-
ple. Left: the gap statistic versus the number of features with nonzero weights.
Center: boxplots of the CERs. Right: weights obtained by the best s.

statistic is achieved. The middle subfigures show that the
obtained partitions of �1- and �1/2-c-means have significantly
smaller CERs comparing to the standard FCM. The right sub-
figures report the average values of estimated feature weights
over 100 trails. We can see that the average values for rele-
vant features of �1- and �1/2-c-means are all bigger than the
noisy features. It shows that the use of gap statistic for �1-
and �1/2-c-means can help in selecting relevant features and
improving the accuracy of partitions.

2) Simulation 2: In this experiment, we compare �1 and
�1/2-c-means with the aforementioned five related clustering
approaches. Assume the data matrix X ∈ R

n×p has six clusters
and each cluster contains 200 objects and p features. The first
50 features of X are relevant features while the others are noisy
features. Assume xij ∼ N(μij, 1) in X are independent and

μij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−μ if i ∈ C1, j ≤ 50

0 if i ∈ C2, j ≤ 50

μ if i ∈ C3, j ≤ 50

2μ if i ∈ C4, j ≤ 50

3μ if i ∈ C5, j ≤ 50

4μ if i ∈ C6, j ≤ 50.

(19)

For j > 50, all noisy features follow standard normal dis-
tribution N(0, 1). We set μ = 0.6, 0.8, p = 200, 500, 1000
and repeat each simulation 100 times. The averaged clustering
performance indices are shown in Table II.

Based on the average and standard deviation values
in Table II, we conduct T-tests to examine whether the

TABLE II
MEAN AND STANDARD DEVIATION OF CER, DB INDEX, AND

DUNN INDEX, MEAN VALUES OF PZW AND PNW FOR

DIFFERENT MODELS IN EXPERIMENT 2

performance (in terms of CER, DB, and DI) are signifi-
cantly different among the approaches, especially between our
approaches (�1- and �1/2-c-means) and the other five related
clustering approaches. Our results indicate that CER and DB
indices of FCM, WEFCM, AWFCM, and k-means are signifi-
cantly higher and DI indices of FCM, WEFCM, AWFCM, and
k-means are significantly lower comparing to �1- and �1/2-c-
means in most of the cases. Since FCM and k-means treat all
features equally, and the solutions of WEFCM and AWFCM
are linear combinations of all features (including noisy fea-
tures), the noisy features negatively influence the clustering
performance. Comparing to FCM, WEFCM, AWFCM, and
k-means, the �1-k-means [1], �1- and �1/2-c-means properly
considered the noisy features, thus have relatively lower CER
and DB values and higher DI values. Moreover, �1- and
�1/2-c-means approaches neither radically eliminate noisy fea-
tures nor conservatively keep relevant features (see PZW and
PNW), thus can produce even better clustering outputs than
the �1-k-means.

3) Simulation 3: In this experimental study, we com-
pare �1- and �1/2-c-means with the five related clustering
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TABLE III
MEAN AND STANDARD DEVIATION OF CER, DB INDEX, AND DUNN

INDEX, MEAN VALUES OF PZW AND PNW FOR SYNTHETIC

DATA WITH 20 CLUSTERS

TABLE IV
SUMMARY OF UCI DATA SETS

approaches by an example with a large number of clusters.
Assume that the data matrix X ∈ R

n×p has K = 20 clus-
ters and each cluster contains 200 objects and p = 200
features. Similar to simulation 2, we suppose the first 50 fea-
tures of X are relevant features. We generate xij ∼ N(μij, 1)

in X independently. For the lth relevant features, we set
μij = (l − 2)μ, l = 1, . . . , 50. All the noisy features obey
standard normal distribution N(0, 1). The experiment results
are shown in Table III.

From Table III, we observe that �1/2-c-means achieves the
lowest CER and highest DI value. This indicates the outper-
formed clustering capability of �1/2-c-means. Moreover, we
also find that �1/2-c-means approach neither radically elimi-
nate noisy features nor conservatively keep relevant features
(see PZW and PNW).

B. Evaluation on UCI Data Sets

In this section, three real-world UCI data sets [38] are used
to evaluate the performance of the clustering approaches. The
data sets are summarized in Table IV.

Table V summarizes the clustering results on the three UCI
data sets. For the Yeast data set, we find that the AWFCM
and WEFCM approaches rather than our �1- and �1/2-c-means
approaches have relatively better clustering performance in
terms of the CER, DB, and DI values. This is because the Yeast
data set is a low-dimensional data set with only eight features.
The �1- and �1/2-c-means selected only a part of the features
as relevant features, thus may loss the information of the data
set. Comparing to the Yeast data set, the Libra Movement
and Gesture Phase Segmentation data sets all have relatively
more features (90 and 50). On these two high-dimensional
data sets, �1- and �1/2-c-means perform relatively better (in
terms of CER, DB, and DI), and identify the least number of
relevant features. The identification of relevant features could
improve the interpretability of the clustering results.

C. Evaluation on Human Activity Recognition Data

We also evaluate �1- and �1/2-c-means and the five
related clustering approaches in the task of human activity

TABLE V
EVALUATION RESULTS ON UCI DATA SETS

recognition (HAR) using smartphone data [39]. HAR tries to
identify a person’s specific activities given a set of obser-
vations of the person’s actions and the surrounding envi-
ronment [39], [40]. The HAR database uses smartphones
to monitor 30 volunteers’ activities of daily living [41].
The volunteers’ age varies from 19 to 48. Each volunteer
performed six daily activities (Walking, Walking Upstairs,
Walking Downstairs, Sitting, Standing, and Laying) with a
smartphone (Samsung Galaxy S II) on the waist. The data set
has 2947 observations, each with 561 features. These features
describe the sensor signals (accelerometer and gyroscope),
which were preprocessed by noisy filters and then sampled
in fixed-width sliding windows of 2.56 s and 50% overlap.
The target of this HAR task is to cluster different activities
automatically by using the collected sensor signals.

We apply the clustering approaches on the data set and
present the confusion matrix of the clustering results. A con-
fusion matrix is a specific table layout which visualizes the
performance of an algorithm. We use recall and precision
to evaluate the clustering results. In pattern recognition and
information retrieval, precision (also called positive predictive
value) is the fraction of retrieved instances that are relevant,
while recall (also known as sensitivity) is the fraction of
relevant instances that are retrieved.

Table VI shows the confusion matrices of �1- and �1/2-c-
means. From the tables, we observe that Walking, Walking
Upstairs, and Walking Downstairs are similar to each other,
thus are hard to be distinguished. Sitting and Standing are sim-
ilar to each other. Comparing to the other confusion matrices,
we find that �1- and �1/2-c-means perform better than the other
related approaches.

Furthermore, Table VII shows the CER, DB, DI values, and
NWs for all the competing approaches. From Table VII, we
find that �1/2-c-means has the lowest CER value, the sec-
ond lowest DB value, and the second highest DI value; at
the same time, �1/2-c-means identifies the least number of
relevant features. This result indicates that �1/2-c-means does
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TABLE VI
CONFUSION MATRIX OF THE CLUSTERING RESULTS ON THE TEST DATA

USING THE �1- AND �1/2-C-MEANS MODEL. ROWS REPRESENT THE

ACTUAL CLUSTERS AND COLUMNS THE ESTIMATED CLUSTERS

TABLE VII
CER, DB INDEX, DUNN INDEX AND NW OF HAR DATA

Fig. 2. Plotting relevant features [gGravityAcc-energy()-X and
tBodyAccMag-entropy] for �1/2-c-means.

not only correctly identify relevant features but also eliminate
more noisy features. To further illustrate the performance of
the �1/2-c-means, here we show four features: two relevant
features gGravityAcc-energy()-X and tBodyAccMag-entropy,
which can be employed to distinguish the Laying, Sitting, and
Standing clusters (as shown in Fig. 2), and two noisy fea-
tures tBodyGyro-Correlation()-X,Z and angle(tBodyAccMean,
gravity), which are irrelevant in this task (as shown in Fig. 3).
�1/2-c-means correctly identified the two relevant features

Fig. 3. Plotting noisy features [tBodyGyro-Correlation()-X,Z and
angle(tBodyAccMean)] for �1/2-c-means.

and eliminated the two noisy features. However, as to the
competing approaches, the �1-k-means failed to identify the
two relevant features; and �1-k-means, FCM, AWFCM, and
WEFCM all treated the two noisy features as relevant features.

V. CONCLUSION

Clustering the high-dimensional data is challenging due to
the existence of abundant noisy features. In this paper, inspired
by the literature of sparse clustering, we proposed a novel
FCM with sparse regularization (i.e., �q(0 < q ≤ 1)-norm
regularization). To analytically concrete the model, �1- and
�1/2-c-means are proposed. We also developed an efficient
algorithm to solve the model. The experimental results also
confirmed the outperformance of our approach.

This paper has several limitations for further considera-
tion. First, the proposed sparse FCM cannot be employed in
cases, where clusters have different features. Generalizing the
proposed sparse FCM to these cases is beyond the sparse clus-
tering framework [1], which is still an open question. In future,
our formulations could be extended to such scenarios. Second,
the proposed sparse FCM is not applicable on big data appli-
cations. We will explore and discuss this problem based on a
systematical framework proposed by Havens et al. [42]. Third,
some other conventional and representative fuzzy clustering
approaches (such as probabilistic c-means [5] and maximum
entropy clustering [43]) could also be considered for handling
high-dimensional data with the similar sparse regularization
techniques.

APPENDIX

PROOFS

A. Proof of Theorem 1

If w and C are fixed, the model (7) can reduce to

max
C

F(U) =
K∑

k=1

n∑

i=1

uα
ik

p∑

j=1

wj
(
xij − ckj

)2
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s.t.
K∑

k=1

uik = 1, 0 ≤ uik ≤ 1

i = 1, . . . , n, k = 1, . . . , K.

The cases
∑p

j=1 wj(xij − ckj)
2 = 0 or

∑p
j=1 wj(xij − ckj)

2 
= 0
are trival. So we only consider the last case. The Lagrange
function of F(U) is

L(ui, λ) =
n∑

i=1

p∑

j=1

uα
ikwj

(
xij − ckj

)2 − λ

(
K∑

k=1

uik − 1

)

where ui = (ui1, . . . , uiK)� and i = 1, . . . , n. We take the
partial derivative with respect to uik and λ, and set

∂L(ui, λ)

∂uik
= 0 (20)

and

∂L(ui, λ)

∂λ
= 0. (21)

From (20) we have

uik =
⎡

⎣ λ

α
∑p

j=1 wj
(
xij − ckj

)2

⎤

⎦

1
α−1

. (22)

Then substituting (22) to (21), we have

(
λ

α

) 1
α−1 = 1

∑K
t=1

[
1∑p

j=1 wj(xij−ctj)
2

] 1
α−1

. (23)

Finally, substituting (23) into (22) and we get

uik = 1

∑K
t=1

[∑p
j=1 wj(xij−ckj)

2

∑p
j=1 wj(xij−ctj)

2

] 1
α−1

. (24)

B. Proof of Theorem 2

Let U and the attribute weights w be fixed, F(U, C, w) is
reduced to

max
C

F(C) =
K∑

k=1

n∑

i=1

uα
ik

p∑

j=1

wj
(
xij − ckj

)2
.

First, it is obvious that if wj = 0, we can get ckj = 0. If
wj 
= 0, we fix w and U, and the first order derivative of
F(C) is

∂F(C)

∂ckj
= 2

n∑

i=1

uα
ikwj

(
xij − ckj

)
(25)

and let (∂F(C)/∂ckj) = 0, we get ckj =
(
∑n

i=1 uα
ikxij/

∑n
i=1 uα

ik).

C. Proof of Theorem 4

Assume λ
∗1/q
j = w∗

j , j = 1, 2, . . . , p, is the optimal solu-
tion of the optimization problem. So we can derive that
λ∗ = (λ∗

1, λ
∗
2, . . . , λ

∗
p)

ᵀ is the local maximum solution of

max
λ

p∑

j=1

λ
1/q
j aj

s.t.
p∑

j=1

λ
2/q
j ≤ 1,

p∑

j=1

λj ≤ s.

The Lagrange equation is

L = ajλ
1/q
j + μ1

(
λ

2/q
j − 1

)
+ μ2

(
λj − s

)
. (26)

Thought the KKT Conditions, there exists μ1 ≤ 0 and
μ2 ≤ 0 such that for any nonzero element u∗

j , and set the
first derivative of L equal to 0

fj
(
xj
) = 1

q
ajx

1/q−1
j + 2

q
μ1x2/q−1

j + μ2 = 0. (27)

Then we derive

f ′
j (x) = 1

q
(1/q − 1)ajx

1
q −2

j + 2

q
(2/q − 1)μ1x

2
q −2

j ≥ 0. (28)

Thus, λ∗ is the local minimal solution of problem (2) instead
of maximum point, so μ1 should be negative.

Since λ∗
j is the positive root of fj(x) = 0, leting f ′

j (x) = 0,
we get

x0 =
⎡

⎣

(
− 1

q ( 1
q − 1)aj

)

2
q ( 2

q − 1)μ1

⎤

⎦
q

=
[

(1 − q)aj)

2(2 − q)μ1

]q

. (29)

Because f ′
j (x) > 0 when x < x0, and f ′

j (x) < 0 when x > x0,
so fj(x) has two non-negative real roots, noted as ϕj1 and ϕj2.
So λ∗

j = ϕj1, ϕj2 or 0. From f ′
j (x) = 0 we can get

a2−q
j > (2 − q)q

(
2(2 − q)

1 − q

)1−q

(−μ1)
1−q(−μ2). (30)

Define

g(x) := qr
1
q −1

f
(x

r

)

= ajx
1
q −1 − 2x

2
q −1 − 1

(2 − q)

(
1 − q

2(2 − q)

)1−q

φ

where φ := (2 − q)q([2(2 − q)/(1 − q)])1−q(−μ1)
1−q(−μ2)

and r = a2−q
j .

Since r > 0, we have that rϕγ j is the γ th largest real root of
g(x), γ = 1, 2. Denote Fγ j(φ) is the real root of ajx(1/q)−1 −
2x(2/q)−1 − (1/(2 − q))([(1 − q)/2(2 − q)])1−qφ = 0, then
rϕγ j = Fγ j(φ), equivalent to ϕγ j = (Fγ j(φ)/r). So we have
ϕ1j1 ≤ ϕ1j2,∀j1 < j2, and ϕ2j1 ≤ ϕ2j2 ,∀j1 < j2. Since λ∗ is the
optimal solution and aj1 ≥ aj2 ,∀j1 < j2, we can derive that
λ∗

j1
≥ λ∗

j2
. Denote k as the smallest index such that λ∗

k+1 = 0.
So we get λ∗

j = ϕ1j,∀j ≤ k − 1 and λ∗
j = ϕ1k or ϕ2k and

λ∗
j = 0,∀j > k.
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Here, we introduce an extra symbol � to simplify the for-
mulas. If λ∗

j = ϕ1k, let � = ∑p+1
j=k+1 2a2−q

j + φ; if λ∗
j = ϕ2k,

let � = ∑p+1
j=k 2a2−q

j − φ. Define

φ(�) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

� − T

if T ≤ � ≤ T + a2−q
j

T − �

if T + a2−q
j ≤ � ≤ T

where h = p, p − 1, . . . , 1. and T = 2
∑p+1

h=j+1 a2−q
h . Then

w∗
j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F1j(ϕ(�))/r1/p

if 0 ≤ � < 2
∑p

l=j+1 a2−q
l + a2−q

j

F2j(ϕ(�))/r1/p

if 2
∑p

l=j+1 a2−q
l + a2−q

j ≤ � < 2
∑p+1

l=j a2−q
l

0 if � ≥ 2
∑p+1

l=j a2−q
l

where j = 1, . . . , p and r is the scaling factor to ensure
‖w∗‖2

2 = 1.

D. Proof of Corollary 1

Based on Theorem 3, solving (10) for q = 1 is equivalent to
find the optimal solution of following optimization problem:

min
w

−a�w

s.t. ‖w‖2
2 = 1, ‖w‖1 = s

wj ≥ 0, j = 1, . . . , p.

Consider the KKT condition of the above optimization
problem

− a + 2λ1w + λ2�1 − v = 0 (31)

‖w‖2
2 = 1 (32)

‖w‖1 = s (33)

w � 0 (34)

λ1, λ2 > 0, v � 0 (35)

vjwj = 0 (36)

where w � 0 means wj ≥ 0,∀j = 1, . . . , p. From (31), we
have a − λ2�1 = 2λ1w − v. Since we know (36), then vj = 0
if for some wj > 0. Furthermore, 2λ1wj = aj − λ2. Using the
same trick, vj = λ2−aj if for some vj > 0, that is wj = 0. Then,
w = (1/2λ1)S(a,�) where we choose � := λ2. Because
‖w‖2 = 1, then w∗ = (S(a,�)/‖S(a,�)‖2).

E. Proof of Corollary 2

According to Theorem 4, for any 0 < q < 1, we have the
optimal solution of (10) satisfies

w∗
j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

F1j(ϕ(�))/r1/p

if 0 ≤ � < 2
∑p

l=j+1 a2−q
l + a2−q

j

F2j(ϕ(�))/r1/p

if 2
∑p

l=j+1 a2−q
l + a2−q

j ≤ � < 2
∑p+1

l=j a2−q
l

0 if � ≥ 2
∑p+1

l=j a2−q
l

where j = 1, . . . , p, r is the scaling factor to ensure
‖w∗‖2 = 1, and Fγ j(φ) is the γ th largest real root of equation

ajx
1−q
j − 2x2−q

j −
(

1 − q

2(2 − q)

)1−q 1

2 − q
φ = 0. (37)

For q = 1/2, (37) becomes

2u3
j − ajuj + 2

3
√

6
φ = 0

where uj = x1/2
j ≥ 0. Then, based on the famous Cartan

formula [19], we can obtain the two non-negative solutions of
the cubic equation as

Fγ j(φ) = 2

3
aj cos2

(
π

3
+ (−1)γ

1

3
arcos

φ

a3/2
j

)

where γ = 1, 2.
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